Giải giúp mình bài này vs đag cần gấp
1.
a) Cho hai số thực a,b thõa mãn a≤b.C/tỏ rằng: 2019a-2020≤2019b-2020
b) Giải bất pt: 1+\(\frac{1+x}{3}\)≤\(\frac{3x-2}{2}\)
c) Giải pt \(\frac{x+2}{x}\)=\(\frac{x^2+5x+\text{4}}{x^2+2x}\)+\(\frac{x}{x+2}\)
2.Cho ΔABC nhọn (AB<AC). Vẽ hai đường cao BE và CF
a) C/m ΔABE∼ΔACF
b) Đường thẳng È và đường thẳng BC cắt nhau tại I. C/m ΔAEF∼ΔABC. Từ đó suy ra HB=ACB
c) Kẽ đường cao AD của ΔABC. C/m BI.CD =BD.CI
Bài 1:
a) Ta có: a≤b(gt)
⇔2019a≤2019b(nhân cả hai vế của bất đẳng thức cho 2019)
⇔2019a+(-2020)≤2019b+(-2020)(cộng cả hai vế của bất đẳng thức cho -2020)
hay 2019a-2020≤2019b-2020(đpcm)
b) Ta có: \(1+\frac{1+x}{3}\le\frac{3x-2}{2}\)
\(\Leftrightarrow\frac{6}{6}+\frac{2\left(1+x\right)}{6}\le\frac{3\left(3x-2\right)}{6}\)
\(\Leftrightarrow6+2\left(1+x\right)\le3\left(3x-2\right)\)
\(\Leftrightarrow6+2+2x\le9x-6\)
\(\Leftrightarrow8+2x-9x+6\le0\)
\(\Leftrightarrow-7x+14\le0\)
\(\Leftrightarrow-7x\le-14\)(cộng hai vế của bất đẳng thức cho -14)
\(\Leftrightarrow x\ge2\)(nhân hai vế của bất đẳng thức cho \(\frac{-1}{7}\) và đổi chiều)
Vậy: S={x|x≥2}
c) ĐKXĐ: x∉{0;-2}
Ta có: \(\frac{x+2}{x}=\frac{x^2+5x+4}{x^2+2x}+\frac{x}{x+2}\)
\(\Leftrightarrow\frac{\left(x+2\right)^2}{x\left(x+2\right)}-\frac{x^2+5x+4}{x\left(x+2\right)}-\frac{x^2}{x\left(x+2\right)}=0\)
Suy ra: \(x^2+4x+4-x^2-5x-4-x^2=0\)
\(\Leftrightarrow-x^2-x=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x+1=0\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\)
Vậy: S={-1}
Bài 2:
a) Xét ΔABE và ΔACF có
\(\widehat{AEB}=\widehat{AFC}\)(=900)
\(\widehat{A}\) chung
Do đó: ΔABE∼ΔACF(g-g)
b) Ta có: ΔABE∼ΔACF(cmt)
⇒\(\frac{AB}{AC}=\frac{AE}{AF}\)
hay \(\frac{AB}{AE}=\frac{AC}{AF}\)
⇔\(\frac{AE}{AB}=\frac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\frac{AE}{AB}=\frac{AF}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
⇒\(\widehat{AFE}=\widehat{ACB}\)(hai góc tương ứng)