K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

à câu b chứng minh \(AB^2=AE.AF\)

giúp mik câu c vs

18 tháng 6 2020

câu b hình như thiếu thì phải viết đề bài đủ nha bạn

1: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp đường tròn đường kính OA

Tâm là trung điểm của OA

2: Xét ΔABE và ΔAFB có

góc ABE=góc AFB

góc BAE chung

=>ΔABE đồng dạng với ΔAFB

=>AB/AF=AE/AB

=>AB^2=AE*AF

 

6 tháng 4 2017

1. có góc B cộng  góc C bằng 180 độ ( tiế vậy nó nội tip tuyến ĐT) vậy nó nội tiếp

2. xét 2 tam giác ABE và tam giác AFB chứng minh nó đồng dạng (g,g), vì góc A chung, góc F bằng góc ABE = 1/2 Sđ cung BE. rồi lập tì số đồng dạng là được.

3. Chưa làm được. nếu bạn làm được rối thông tin cho mình nhé. cảm ơn

26 tháng 5 2021

undefinedundefinedundefined

16 tháng 4 2016

1. Vì BO vuông góc với BA => góc ABO = 90 độ 
    Vi CO vuông góc với CA => góc ACO = 90 độ 

Xét tứ giác ABOC có : Góc ABC = 90 độ, Góc ACO = 90 độ 

mà 2 góc trên đối nhau và có tổng = 180 độ

=> tứ giác ABOC là tứ giác nội tiếp đường tròn.

Nối A với O, ta được tam giác ABO vuông tại B. 

Vẽ trung tuyến BI của tam giác ABO => IO = IA = IB

=> I là tâm đường tròn ngoại tiếp tứ giác ABOC. 

2. Câu này câu hỏi là gì vậy?

3, 

                            

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>AH*AO=AB^2

Xét ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB^2=AD*AE=AH*AO

30 tháng 11 2023

a) Nhận thấy \(\widehat{OBA}=\widehat{OCA}=90^o\) nên tứ giác ABOC nội tiếp đường tròn đường kính OA.

b) Nhân thấy \(\widehat{OID}=\widehat{OBD}=90^o\) nên tứ giác OIBD nội tiếp đường tròn đường kính OD \(\Rightarrow\widehat{IDO}=\widehat{IBO}\)

 Lại có \(\widehat{IBO}=\widehat{CBO}=\widehat{BCO}\) nên dễ dàng suy ra đpcm.

c) Dễ chứng minh tứ giác OCFI nội tiếp \(\Rightarrow\widehat{OCB}=\widehat{OCI}=\widehat{OFI}=\widehat{OFD}\) 

Theo câu b, ta có \(\widehat{FDO}=\widehat{IDO}=\widehat{BCO}\) nên dẫn đến \(\widehat{OFD}=\widehat{FDO}\). Do đó tam giác ODF cân tại O. (đpcm)

d) Tam giác ODF cân tại F có đường cao OI nên I là trung điểm DF.

Mặt khác, có I là trung điểm BE nên tứ giác BDEF là hình bình hành.

\(\Rightarrow\) EF//BD hay EF//AB.

Lại có E là trung điểm BC nên F là trung điểm AC (đpcm)