cho hs y=2x+3/x-2
viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng d: y=-1/7x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương trình tiếp tuyến tại x 0 ; y 0 có hệ số góc là k = y ' = − 3 x − 1 2
Để tiếp tuyến tại x 0 ; y 0 song song với đường thẳng d : y = − 3 x − 1 thì
k = − 3 x − 1 2 = − 3 ⇔ x − 1 2 = 1 ⇔ x 1 = 2 x 2 = 0 ⇔ y 1 = 5 y 2 = − 1 ⇔ d 1 : y = − 3 x + 11 d 2 : y = − 3 x − 1 ≡ d ( l o a i )
Chọn D.
Gọi M(xo; yo) là tiếp điểm của của tiếp tuyến và đồ thị hàm số.
f'(x) = x02 + xo – 2.
Viết lại d: y = 4x + 2 ⇒ Hệ số góc k = 4
Vì tiếp tuyến cần tìm song song với d nên:
Với , pttt là:
Với , pttt là:
KL:Có hai tiếp tuyến thỏa mãn ycbt là và .
Đáp án C.
Ta có:
y ' = − 3 x 2 + 4 x ; y ' = 1 ⇔ − 3 x 2 + 4 x = 1 ⇔ x = 1 x = 1 3 .
Khi x = 1, tiếp tuyến có phương trình y = x + 2 trùng với đường thẳng y = x + 2.
Khi x = , tiếp tuyến có phương trình y = x + 50 27 .
Gọi là tọa độ tiếp điểm và k là hệ số góc của tiếp tuyến.
Theo giả thiết, ta có
Với Phương trình tiếp tuyến cần tìm là: y = 9x + 7 (loại)(vì trùng với đường thẳng đã cho).
Với Phương trình tiếp tuyến cần tìm là: y = 9x - 25
Chọn B.
Ta có : \(y=\dfrac{x-1}{x+1}\Rightarrow y'=\dfrac{\left(x+1\right)-\left(x-1\right)}{\left(x+1\right)^2}=\dfrac{2}{\left(x+1\right)^2}\)
Giả sử d' là tiếp tuyến của đths đã cho . Do d' // d : y = \(\dfrac{x-2}{2}\)
\(\Rightarrow d'\) có HSG = 1/2 \(\Rightarrow\dfrac{2}{\left(x+1\right)^2}=\dfrac{1}{2}\Leftrightarrow4=\left(x+1\right)^2\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Với x = 1 . PTTT d' : \(y=\dfrac{1}{2}\left(x-1\right)+0=\dfrac{1}{2}x-\dfrac{1}{2}\)
Với x = -3 . PTTT d' : \(y=\dfrac{1}{2}\left(x+3\right)+2=\dfrac{1}{2}x+\dfrac{7}{2}\)
y'=(x-1)'(x+1)-(x-1)(x+1)'/(x+1)^2=(x+1-x+1)/(x+1)^2=2/(x+1)^2
(d1)//(d)
=>(d1): y=1/2x+b
=>y'=1/2
=>(x+1)^2=4
=>x=1 hoặc x=-3
Khi x=1 thì f(1)=0
y-f(1)=f'(1)(x-1)
=>y-0=1/2(x-1)=1/2x-1/2
Khi x=-3 thì f(-3)=(-4)/(-2)=2
y-f(-3)=f'(-3)(x+3)
=>y-2=1/2(x+3)
=>y=1/2x+3/2+2=1/2x+7/2
\(y=\frac{2x+3}{x-2}\Rightarrow y'=\frac{-7}{\left(x-2\right)^2}\)
Tiếp tuyến song song với d nên có hệ số góc \(k=-\frac{1}{7}\)
\(\Rightarrow\frac{-7}{\left(x_0-2\right)^2}=-\frac{1}{7}\Rightarrow\left(x_0-2\right)^2=49\)
\(\Rightarrow\left[{}\begin{matrix}x_0=9\Rightarrow y_0=3\\x_0=-5\Rightarrow y_0=1\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-\frac{1}{7}\left(x-9\right)+3\\y=-\frac{1}{7}\left(x+5\right)+1\end{matrix}\right.\)
y=2x+3x−2⇒y′=−7(x−2)2�=2�+3�−2⇒�′=−7(�−2)2.
Tiếp tuyến song song với d nên có hệ số góc k=−17�=−17.
⇒−7(x0−2)2=−17⇒(x0−2)2=49⇒−7(�0−2)2=−17⇒(�0−2)2=49.
⇒[x0=9⇒y0=3x0=−5⇒y0=1⇒[�0=9⇒�0=3�0=−5⇒�0=1.
Có 2 tiếp tuyến thỏa mãn: [y=−17(x−9)+3y=−17(x+5)+1.