Cho đường tròn (C): x2+y2+4x+2y+4=0 và điểm A(m; 2-m). Với giá trị nào của m thì qua A kẻ được hai tiếp tuyến tới đường tròn tạo với nhau một góc 60 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x 2 + y 2 + 4 x − 2 y − 4 = 0 và điểm M(-2; 4)
Đường tròn (C): x 2 + y 2 + 4 x - 2 y - 4 = 0 có tâm I(-2;1) và bán kính R = ( − 2 ) 2 + 1 2 + 4 = 3
Phương trình tiếp tuyến tại M(- 2; 4) và nhận I M → ( 0 ; 3 ) làm VTPT là:
0( x +2) + 3 (y – 4) = 0 hay y = 4
ĐÁP ÁN D
Đường tròn (C): x 2 + y 2 + 4 x − 2 y − 4 = 0 có tâm I(-2; 1) và bán kính R = 3.
Ta có : I M = 1 + 2 2 + 2 − 1 2 = 10 > 3 nên M nằm ngoài đường tròn.
Qua M kẻ được hai tiếp tuyến đến đường tròn.
ĐÁP ÁN C
ĐÁP ÁN B
Đường tròn (C): x 2 + y 2 - 4 x + 2 y – 4 = 0 có tâm I(2; -1) và bán kính R = 2 2 + ( − 1 ) 2 + 4 = 3
Tiếp tuyến qua M( -4; 2) và nhận n → ( a ; b ) làm VTPT có phương trình :
a( x+ 4) + b (y – 2)= 0 hay ax + by + 4a – 2b = 0 (*)
Khoảng cách từ tâm I đến tiếp tuyến bằng bán kính nên ta có:
d ( I ; d ) = R ⇔ 2 a − b + 4 a − 2 b a 2 + b 2 = 3 ⇔ 6 a − 3 b a 2 + b 2 = 3 ⇔ 2 a − b a 2 + b 2 = 1 ⇔ 2 a − b = a 2 + b 2 ⇔ 4 a 2 − 4 a b + b 2 = a 2 + b 2 ⇔ 3 a 2 − 4 a b = 0 ⇔ a ( 3 a − 4 b ) = 0 ⇔ a = 0 3 a = 4 b
* Nếu a= 0 , chọn b= 1 thay vào (*) ta có phương trình tiếp tuyến là: y – 2= 0
* Nếu 3a = 4b, chọn a = 4 thì b = 3 thay vào (*) ta có phương trình tiếp tuyến là:
4x + 3y + 10 = 0
Vậy có 2 tiếp tuyến qua M là: y – 2= 0 và 4x +3y + 10= 0
(C): x^2+y^2+4x-2y-4=0
=>(x+2)^2+(y-1)^2=9
=>I(-2;1); R=3
M thuộc d nên M(a;1-a)
M nằm ngoài (C) nên IM>R
=>IM^2>9
=>2a^2+4a-5>0
MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5
=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)
A,B thuộc (C)
=>Tọa độ A,B thỏa mãn phương trình:
x^2+y^2+4x-2y-4=0(2)
(1)-(2)=(a+2)x-ay+3a-5=0(3)
Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB
(E) tiếp xúc AB nên (E): R1=d(E,AB)
Chu vi của (E) lớn nhất khi R1 lớn nhất
=>d(E;AB) lớn nhất
Gọi H là hình chiếu vuông góc của E lên AB
=>d(E,Δ)=EH<=EK=căn 10/2
Dấu = xảy ra khi H trùng K
=>AB vuông góc EK
vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)
AB vuông góc EK
=>-1/2a+3/2(a+2)=0
=>a=-3
=>M(-3;4)
Đáp án D
Gọi d là đường thẳng qua M có véc tơ chỉ phương:
- Đường tròn (C1) tâm I1 (1;1) và R1= 1
Đường tròn (C2) : tâm I2( -2;0) và R2= 3
- Nếu d cắt (C1) tại A :
- Nếu d cắt (C2) tại B:
- Theo giả thiết: MA= 2 MB nên MA2= 4 MB2 (*)
- Ta có :
Đường tròn (C): x 2 + y 2 + 4 x + 2 y + 4 = 0 có tâm I(-2;-1) và bán kính R = 1.
Gọi 2 tiếp điểm là B và C.
Ta có: B A C ^ = 60 0 nên B A I ^ = I A C ^ = 1 2 B A C ^ = 30 0 ( tính chất 2 tiếp tuyến cắt nhau).
Vì sin B A I ^ = sin 30 0 = 1 2 ; lại có: sin B A I ^ = B I A I = R A I
Suy ra: R A I = 1 2 ⇔ A I = 2 R = 2 ( vì R = 1)
⇔ m + 2 2 + 3 − m 2 = 2 2 ⇒ 2 m 2 − 2 m + 9 = 0 (vô nghiệm).
Chọn D.
Qua điểm A(m ; m + 2) có hai tiếp tuyến với (C) khi và chỉ khi A nằm ngoài (C)
⟺ m 2 + m + 2 2 + 4 m − 2 m − 4 > 0 ⇒ 2 m 2 + 6 m > 0 ⇒ m > 0 m < − 3
Chọn D
(C): x 2 + y 2 − 4 x + 2 y − 15 = 0 và đường thẳng ∆: - 4x + 3y + 1 = 0.
Đường tròn (C): x 2 + y 2 − 4 x + 2 y − 15 = 0 có tâm I(2; -1) và bán kính R = 20 .
Khoảng cách d I , ∆ = − 4.2 + 3. − 1 + 1 5 = 2 < R nên đường thẳng cắt đường tròn tại hai điểm phân biệt A, B cách nhau một khoảng là
A B = 2 R 2 − d I , ∆ 2 = 8 .
ĐÁP ÁN C
Đường tròn (C) tâm \(I\left(-2;-1\right)\) bán kính \(R=1\)
\(\overrightarrow{IM}=\left(m+2;3-m\right)\Rightarrow IM^2=\left(m+2\right)^2+\left(3-m\right)^2=2m^2-2m+13\)
Giả sử A nằm ngoài đường tròn và 2 tiếp điểm là B và C
\(\Rightarrow\widehat{BAC}=60^0\Rightarrow\widehat{IAB}=30^0\)
\(\Rightarrow IM=\frac{IB}{sin30^0}=2IB=2R=2\Rightarrow IM^2=4\)
\(\Rightarrow2m^2-2m+13=4\Leftrightarrow2m^2-2m+9=0\) (vô nghiệm)
Ko tồn tại m thỏa mãn
Bạn xem lại đề, điểm M nằm quá xa đường tròn (M thuộc \(x+y-2=0\) ) nên góc chắc chắn là rất nhỏ