Trong mp Oxy cho tam giác ABC A(1;2) B(2;-3) C(3;5)
Viết phương trình đường thẳng ∆ vuông góc AB và tạo 2 trục toạ độ ∆ có diện tích bằng 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trực tâm của tam giác ABC có tọa độ \(H\left(x;y\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{BC}=\left(6;-2\right)\\\overrightarrow{AH}=\left(x-1;y\right)\end{matrix}\right.\Rightarrow\overrightarrow{BC}\perp\overrightarrow{AH}\Leftrightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)
\(\Leftrightarrow6\left(x-1\right)-2y=0\)
\(\Leftrightarrow3x-y=3\left(1\right)\)
Lại có:
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;1\right)\\\overrightarrow{CH}=\left(x-5;y+1\right)\end{matrix}\right.\Rightarrow\overrightarrow{AB}\perp\overrightarrow{CH}\Leftrightarrow\overrightarrow{CH}.\overrightarrow{AB}=0\)
\(\Leftrightarrow-2\left(x-5\right)+y+1=0\)
\(\Leftrightarrow-2x+y=-11\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-27\end{matrix}\right.\Rightarrow H\left(-8;-27\right)\)
Gọi K là hình chiếu của A lên BC, I là hình chiếu của B lên AC
\(\Rightarrow\left\{{}\begin{matrix}AK\perp BC\\BI\perp AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AK}.\overrightarrow{BC}=\overrightarrow{0}\\\overrightarrow{BI}.\overrightarrow{AC}=\overrightarrow{0}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_K-x_A\right)\left(x_C-x_B\right)=0\\\left(y_K-y_A\right)\left(y_C-y_B\right)=0\\\left(x_I-x_B\right)\left(x_C-x_A\right)=0\\\left(y_I-y_B\right)\left(y_C-y_A\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}I\left(...\right)\\K\left(....\right)\end{matrix}\right.\)
Viết phương trình đường thẳng ua A và K; Viết phương trìn đường thẳng ua B và I.
Giao điểm của 2 đường thẳng đó chính là tọa độ trực tâm H
\(\overrightarrow{AC}=\left(2;-4\right);\overrightarrow{BC}=\left(6;3\right)\)
Vì 2.6+(-4).3=0 => AC_|_BC => tg ABC là tam giác vuông
\(\overrightarrow{BC}=\left(16;4\right)=4\left(4;1\right)\) ; \(\overrightarrow{AC}=\left(2;2\right)=2\left(1;1\right)\)
Phương trình đường cao xuất phát từ A và vuông góc BC:
\(4\left(x-3\right)+1\left(y-2\right)=0\Leftrightarrow4x+y-14=0\)
Pt đường cao xuất phát từ B:
\(1\left(x+11\right)+1\left(y-0\right)=0\Leftrightarrow x+y+11=0\)
Tọa độ H là nghiệm: \(\left\{{}\begin{matrix}4x+y-14=0\\x+y+11=0\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{25}{3};-\dfrac{58}{3}\right)\)
cho mình hỏi c2=100 tìm như thế nào
\(\overrightarrow{AB}=\left(1;-5\right)\)
Do \(\Delta\) vuông góc AB nên \(\Delta\) nhận \(\left(1;-5\right)\) là 1 vtpt
Phương trình \(\Delta\) có dạng: \(x-5y+c=0\) (với c khác 0 do \(\Delta\) tạo với 2 trục tọa độ 1 tam giác)
Giao điểm A của \(\Delta\) và Ox: \(\left\{{}\begin{matrix}y=0\\x-5y+c=0\end{matrix}\right.\) \(\Rightarrow A\left(-c;0\right)\) \(\Rightarrow OA=\left|c\right|\)
Giao điểm B của \(\Delta\) và Oy: \(\left\{{}\begin{matrix}x=0\\x-5y+c=0\end{matrix}\right.\) \(\Rightarrow B\left(0;\frac{c}{5}\right)\) \(\Rightarrow OB=\left|\frac{c}{5}\right|\)
\(S_{OAB}=10\Leftrightarrow\frac{1}{2}OA.OB=10\Leftrightarrow OA.OB=20\)
\(\Leftrightarrow\left|c\right|.\left|\frac{c}{5}\right|=20\Leftrightarrow c^2=100\Rightarrow\left[{}\begin{matrix}c=10\\c=-10\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-5y+10=0\\x-5y-10=0\end{matrix}\right.\)