K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

cho mình hỏi c2=100 tìm như thế nào

 

NV
15 tháng 6 2020

\(\overrightarrow{AB}=\left(1;-5\right)\)

Do \(\Delta\) vuông góc AB nên \(\Delta\) nhận \(\left(1;-5\right)\) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(x-5y+c=0\) (với c khác 0 do \(\Delta\) tạo với 2 trục tọa độ 1 tam giác)

Giao điểm A của \(\Delta\) và Ox: \(\left\{{}\begin{matrix}y=0\\x-5y+c=0\end{matrix}\right.\) \(\Rightarrow A\left(-c;0\right)\) \(\Rightarrow OA=\left|c\right|\)

Giao điểm B của \(\Delta\) và Oy: \(\left\{{}\begin{matrix}x=0\\x-5y+c=0\end{matrix}\right.\) \(\Rightarrow B\left(0;\frac{c}{5}\right)\) \(\Rightarrow OB=\left|\frac{c}{5}\right|\)

\(S_{OAB}=10\Leftrightarrow\frac{1}{2}OA.OB=10\Leftrightarrow OA.OB=20\)

\(\Leftrightarrow\left|c\right|.\left|\frac{c}{5}\right|=20\Leftrightarrow c^2=100\Rightarrow\left[{}\begin{matrix}c=10\\c=-10\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-5y+10=0\\x-5y-10=0\end{matrix}\right.\)

23 tháng 1 2021

Giả sử trực tâm của tam giác ABC có tọa độ \(H\left(x;y\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{BC}=\left(6;-2\right)\\\overrightarrow{AH}=\left(x-1;y\right)\end{matrix}\right.\Rightarrow\overrightarrow{BC}\perp\overrightarrow{AH}\Leftrightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)

\(\Leftrightarrow6\left(x-1\right)-2y=0\)

\(\Leftrightarrow3x-y=3\left(1\right)\) 

Lại có:

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;1\right)\\\overrightarrow{CH}=\left(x-5;y+1\right)\end{matrix}\right.\Rightarrow\overrightarrow{AB}\perp\overrightarrow{CH}\Leftrightarrow\overrightarrow{CH}.\overrightarrow{AB}=0\)

\(\Leftrightarrow-2\left(x-5\right)+y+1=0\)

\(\Leftrightarrow-2x+y=-11\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-27\end{matrix}\right.\Rightarrow H\left(-8;-27\right)\)

26 tháng 12 2021

Cho mình hỏi cách tính vecto bc vs ạ mình cảm ơn

14 tháng 1 2021

Gọi K là hình chiếu của A lên BC, I là hình chiếu của B lên AC

\(\Rightarrow\left\{{}\begin{matrix}AK\perp BC\\BI\perp AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AK}.\overrightarrow{BC}=\overrightarrow{0}\\\overrightarrow{BI}.\overrightarrow{AC}=\overrightarrow{0}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_K-x_A\right)\left(x_C-x_B\right)=0\\\left(y_K-y_A\right)\left(y_C-y_B\right)=0\\\left(x_I-x_B\right)\left(x_C-x_A\right)=0\\\left(y_I-y_B\right)\left(y_C-y_A\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}I\left(...\right)\\K\left(....\right)\end{matrix}\right.\)

Viết phương trình đường thẳng ua A và K; Viết phương trìn đường thẳng ua B và I.

Giao điểm của 2 đường thẳng đó chính là tọa độ trực tâm H

14 tháng 1 2021

bạn có thể giải tiếp ko?

19 tháng 2 2021

\(\overrightarrow{AC}=\left(2;-4\right);\overrightarrow{BC}=\left(6;3\right)\)

Vì 2.6+(-4).3=0 => AC_|_BC => tg ABC là tam giác vuông

NV
7 tháng 3 2021

\(\overrightarrow{BC}=\left(16;4\right)=4\left(4;1\right)\) ; \(\overrightarrow{AC}=\left(2;2\right)=2\left(1;1\right)\)

Phương trình đường cao xuất phát từ A và vuông góc BC:

\(4\left(x-3\right)+1\left(y-2\right)=0\Leftrightarrow4x+y-14=0\)

Pt đường cao xuất phát từ B:

\(1\left(x+11\right)+1\left(y-0\right)=0\Leftrightarrow x+y+11=0\)

Tọa độ H là nghiệm: \(\left\{{}\begin{matrix}4x+y-14=0\\x+y+11=0\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{25}{3};-\dfrac{58}{3}\right)\)

12 tháng 12 2020

thiếu điểm C k bạn?