chứng minh với mọi a,b,c ta có bất đẳng thức
\(2a^2+b^2+c^2\ge2a\left(b+c\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
a, Ta có : \(\left(a-b\right)^2\ge0< =>a^2-2ab+b^2\ge0< =>a^2+b^2\ge2ab\)
\(\left(a-c\right)^2\ge0< =>a^2-2ac+c^2\ge0< =>a^2+c^2\ge2ac\)
Cộng theo vế hai bất đẳng thức sau : \(a^2+b^2+a^2+c^2\ge2ac+2ab< =>2a^2+b^2+c^2\ge2a\left(b+c\right)\left(đpcm\right)\)
Dấu = xảy ra khi và chỉ khi \(a=b=c\)
a) Áp dụng bất đẳng thức AM-GM :
\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)
b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)
\(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)
Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)
a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)
\(\Leftrightarrow\)a^2+2ab+b^2>=4ab
\(\Leftrightarrow\)a^2-2ab+b^2>=0
\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)
b,\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng
\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
VT : (a + b + c)2 + a2 + b2 + c2
= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2
= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)
= (a + b)2 + (b + c)2 + (a + c)2 = VP
Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)
\(2a^2+b^2+c^2\ge2a\left(b+c\right)\)
\(a^2+a^2+b^2+c^2\ge2ab+2ac\)
\(a^2+2ab+b^2+a^2+2ac+c^2\ge0\)
\(\left(a+b\right)^2+\left(a+c\right)^2\ge0\forall a,b,c\)
\(\Rightarrowđpcm\)
a^2 + a^2 + b^2 + c^2 lớn hơn hoặc bằng 2a(b+c)
Áp dụng bất đt cauchy cho hai số không âm a^2 và b^2
a^2 + b^2 lớn hơn hoặc bằng 2 căn ( a^2 b^2 )
a^2 + b^2 lớn hơn hoặc bằng 2ab ( 1 )
Áp dụng bất đẳng thức cauchy cho hai số không âm a^2 và c^2
a^2 + c^2 lớn hơn hoặc bằng 2 căn ( a^2 c^2 )
a^2 + c^2 lớn hơn hoặc bằng 2ac ( 2 )
( 1 ) và ( 2 )
Suy ra a^2 + b^2 + a^2 + c^2 lớn hoăn hoặc bằng 2ab + 2ac
2a^2 + b^2 + c^2 lớn hơn hoặc bằng 2a(b+c) ( đpcm )
\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2\ge0\) (luôn đúng)
Vậy BĐT ban đầu được chứng minh
Dấu "=" xảy ra khi \(a=b=c\)