K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2016

b) trước hết ta cần chứng minh nếu x+y+z=0 thì x^3+y^3+z^3=3xyz

ta có x+y+z=0==> x=-(y+z) 

             <=> \(x^3=-\left(y^3+z^3+3yz\left(y+z\right)\right)\)

           <=> \(x^3+y^3+z^3=-3yz\left(y+z\right)\)

      <=> \(x^3+y^3+z^3=3xyz\)( cì y+z=-x)

 áp dụng vào bài ta có \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

 do đó M=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)

11 tháng 5 2017

Mình nghĩ là bạn chép nhầm đề vì nếu là vô số số 1 thì không thể tính được. Đề đúng phải là:

Cho \(A=\frac{2016^2+1^2}{2016.1}+\frac{2015^2+2^2}{2015.2}+...+\frac{1009^2+1008^2}{1009.1008}\)\(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\)

Tính \(\frac{A}{B}\)

Ta có: \(A=\frac{2016^2+1^2}{2016.1}+\frac{2015^2+2^2}{2015.2}+...+\frac{1009^2+1008^2}{1009.1008}\)

\(=\frac{2016}{1}+\frac{1}{2016}+\frac{2015}{2}+\frac{2}{2015}+...+\frac{1009}{1008}+\frac{1008}{1009}\)

\(=\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2016}\)

\(=1+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)\)

\(=1+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}\)

\(=2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}=2017\)

11 tháng 5 2017

Xem kỹ là số

\(B=\frac{1+1+...+1}{2+3+...+2016}\) hay \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\) nhé b

12 tháng 11 2016

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+2016\right)\)

\(A=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+\frac{1}{4}.\frac{\left(1+4\right).4}{2}+...+\frac{1}{16}.\frac{\left(1+16\right).16}{2}\)

\(A=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+\frac{1}{4}.\frac{5.4}{2}+...+\frac{1}{16}.\frac{17.16}{2}\)

\(A=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(A=\frac{1}{2}.\left(2+3+4+5+...+17\right)\)

\(A=\frac{1}{2}.\frac{\left(2+17\right).16}{2}=19.4=76\)

12 tháng 11 2016

hik như vế sau là a làm theo 16 chứ k fai 2016 hay sao ấy

24 tháng 9 2016

\(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+..+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)

\(C=1+\frac{1}{2}.\left(1+2\right).2:2+\frac{1}{3}.\left(1+3\right).3:2+\frac{1}{4}.\left(1+4\right).4:2+...+\frac{1}{2016}.\left(1+2016\right).2016:2\)

\(C=1+3:2+4:2+5:2+...+2017:2\)

\(C=2.\frac{1}{2}+3.\frac{1}{2}+4.\frac{1}{2}+5.\frac{1}{2}+...+2017.\frac{1}{2}\)

\(C=\frac{1}{2}.\left(2+3+4+5+...+2017\right)\)

\(C=\frac{1}{2}.\left(2+2017\right).2016:2\)

\(C=\frac{1}{2}.2019.2016.\frac{1}{2}\)

\(C=2019.504=1017576\)

24 tháng 9 2016

sao lại chia 2