K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2020

\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)

\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)

\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)

\(S_1=1+1+1+...+n=n\)

\(S_2=3+9+...+3^n\)

\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)

\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)

9 tháng 4 2017

ko bít

4 tháng 5 2017

Bài này dễ ,lớp 6 còn làm đc!

24 tháng 12 2015

áp dụng quy tắc 

số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1

Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2

25 tháng 3 2017

\(S=1+2+5+14+....+\frac{3^{x-1}+1}{2}\)

\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+.....+\frac{3^{x-1}+1}{2}\)

\(=\frac{\left(3^0+1\right)+\left(3^1+1\right)+\left(3^2+1\right)+.....+\left(3^{x-1}+1\right)}{2}\)

\(=\frac{\left(1+3+3^2+.....+3^{x-1}\right)+x}{2}\)

Đặt \(A=1+3+3^2+....+3^{x-1}\)

\(3A-A=\left(3+3^2+....+3^x\right)-\left(1+3+....+3^{x-1}\right)\)

\(2A=3^x-1\Rightarrow A=\frac{3^x-1}{2}\)

\(\Rightarrow S=\frac{\frac{3^x-1}{2}+x}{2}\)

3 tháng 3 2016

Có 1 = \(\frac{3^0+1}{2}\)

2 = \(\frac{3^1+1}{2}\)

5 = \(\frac{3^2+1}{2}\)

14 = \(\frac{3^3+1}{2}\)

.......

=> S = \(\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+\frac{3^3+1}{2}+...+\frac{3^{n-1}+1}{2}\)

S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)

S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+1.n}{2}\)

S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+n}{2}\)

Đặt A = 30 + 31 + 32 + 33 +....+ 3n-1 

=> 3A = 31 + 32 + 33 +....+ 3n

=> 2A = 3A - A = 3n - 30

=> A = \(\frac{3^n-1}{2}\)

Thay A vào S, ta có:

S = \(\frac{\frac{3^n-1}{2}+n}{2}\)

=> S = \(\frac{3^n-1}{4}+\frac{n}{2}\)

6 tháng 3 2016

Hồ Thu Giang à, trong 4 đáp án ở bài Cóc vàng tài ba đó ko có cái này !

3 tháng 4 2016

S=(3^0+1/2)+(3^1/2+1/2)+(3^2/2+1/2)+....+(3^n-1/2+1/2)

=n*1/2+1/2*(3^0+3^1+3^2+...+3^n-1)

=n^2/2+(3^n-1/4)=3^n+2-1/4

~~~~~~~~~~~~~~~~~~~~~

1 tháng 3 2019

nhìn cái cuối là biết quy luật đó bạn :))

\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)

\(S=\frac{\left(3^0+3^1+....+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\left(\text{ có n c/s 1}\right)\)

\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}=3^n-1+\frac{n}{2}\)

chỗ 30+31+...+3n-1 bn tự tính :))