Cho f(x) = x6 + 99x5 - 99x4 + 99x3 - 99x2 + 99x
Tính f(-100)
Giải hộ mình cái các bạn ơi !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
ta có:f(0)=a*0^2+b*0+c=6\(\Rightarrow\) c=6
f(1)=a*1^2+b*1+c=12\(\Rightarrow\)a*1^2+b*1=6\(\Rightarrow\)a+b=6
f(1)=a*(-1)^2+b*(-1)+c=2\(\Rightarrow\)a*1^2+b*1=-4\(\Rightarrow\)a-b=-4
=> a=1;b=5
vậy a=1;b=5;c=6
+) Với x = 2 ta có: f(2) + 2f(0) = 2.3
f(2) + 2f(0) = 6 (1)
+) Với x = 0 ta có: f(0) + 2f(2) = 0.3
f(0) + 2f(2) = 0
=> 2f(0) + 4f(2) = 0 (2)
Lấy (1) trừ (2) ta có:
-3f(2) = 6
=> f(2) = -2
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
\(\left|8-x\right|=x^2-x\)
<=> \(\orbr{\begin{cases}8-x=x^2-x\\8-x=x-x^2\end{cases}}\)
<=> \(\orbr{\begin{cases}8=x^2\\8=2x-x^2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\pm2\sqrt{2}\\x\left(2-x\right)=8\end{cases}}\)
Tới đây bạn tự giải nhé,.
ta có: |8-x|=x2-x
=> \(\orbr{\begin{cases}8-x=x^2-x\\8-x=x-x^2\end{cases}}\)
(+) 8-x=x2-x
<=> x2=8 <=> x=\(\sqrt{8}\)
(+) 8-x=x-x2
<=> x2-2x+8=0
<=> x2-2x+1+7 =0
<=> (x-1)2+7=0
mà (x-1)2\(\ge\) 0 \(\forall\)x nên (x-1)2+7>0
=> ptvn
vậy phương trình đã cho có 1 nghiệm là x=\(\sqrt{8}\)
\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)
\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)
\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)
\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)
\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)
\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)
\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)
\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)
\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)
\(h\left(x\right)=0+x+6+x^3\)
\(h\left(x\right)=x^3+x+6\)
d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9
<=> h(x) = -2x2 - x + 9 - f(x) + g(x)
<=> h(x) = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3
<=> h(x) = x3 + x.
Vậy h(x) = x3 + x
Ta có f(-100) = 1006 - 99.1005 - 99.1004 - 99.1003 - 99.1002 - 99.100
= 1006 - 99(1005 + 1004 + 1003 + 1002 + 100)
Đặt C = 1005 + 1004 + 1003 + 1002 + 100
=> F(-100) = 1006 - 99C
Khi đó 100C = 1006 + 1005 + 1004 + 1003 + 1002
Lấy 100C trừ C theo vế ta có :
100C - C = (1006 + 1005 + 1004 + 1003 + 1002) - ( 1005 + 1004 + 1003 + 1002 + 100)
99C = 1006 - 100
Khi đó f(-100) = 1006 - 1006 + 100 = 100
bạn ơi có gì đó sai sai