K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

a) Xét △DEI và △DFI có

DI : cạnh chung

EI = IF ( gt )

DE = DF ( △DEF cân )

⇒ △DEI = △DFI ( c.c.c )

b) Trong △ cân , đường trung tuyến đồng thời là đường trung trực

mà DI là đường trung tuyến ⇒ DI là đường trung trực ⇒ DI ⊥ EF

12 tháng 6 2020

hihihihi

12 tháng 7 2015

hình như sai đề r, IC ko // BE đk đâu

6 tháng 12 2016

Ta có hình vẽ:

A B C M E F N x y

Câu d mình quên kí hiệu vuông góc rồi, bạn tự bổ sung nhé

a/ Xét tam giác AMB và tam giác AMC có:

AB = AC (GT)

BM = MC (GT)

AM : cạnh chung

=> tam giác AMB = tam giác AMC (c.c.c)

b/ Xét tam giác AEM và tam giác AFM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

AM : cạnh chung

\(\widehat{EAM}\)=\(\widehat{FAM}\) ( vì tam giác AMB = tam giác AMC)

Vậy tam giác AEM = tam giác AFM (g.c.g)

=> AE = AF (2 cạnh tương ứng)

c/ Xét tam giác EBM và tam giác FCM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

BM = MC (GT)

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)

Vậy tam giác EBM = tam giác FCM

(theo trường hợp cạnh huyền góc nhọn)

=> BE = FM (2 cạnh tương ứng) (1)

Ta có: EM: cạnh chung (2)

Ta có: 2 tam giác AEM và tam giác AFM đối xứng qua cạnh chung AM và có: \(\widehat{E}\)=\(\widehat{F}\)=900

=> \(\widehat{EMF}\) = 900 = \(\widehat{BEM}\) (3)

Từ (1),(2),(3) => tam giác BEM = tam giác EFM

=> \(\widehat{FEM}\)=\(\widehat{EMB}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> EF // BC

d/ Xét tam giác ABN và tam giác ACN có:

AB = AC (GT)

\(\widehat{BAN}\)=\(\widehat{CAN}\) (vì tam giác AMB = tam giác AMC)

AN: chung

=> tam giác ABN = tam giác ACN (c.g.c)

BN = CN ( 2 cạnh tương ứng)

Xét tam giác BMN và tam giác CMN có:

MN: chung

BM = MC (GT)

BN = CN (đã chứng minh)

=> tam giác BMN = tam giác CMN (c.c.c)

-Ta có: tam giác ABM = tam giác ACM (câu a)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)

=> góc AMB = góc AMC = 900

-Ta có: tam giác BMN = tam giác CMN (đã chứng minh)

=> \(\widehat{BMN}\)=\(\widehat{CMN}\) (2 góc tương ứng)

\(\widehat{BMN}\)+\(\widehat{CMN}\)=1800 (kề bù)

=> góc BMN = góc CMN = 900

Ta có: \(\widehat{AMB}\)+\(\widehat{BMN}\)=900+900 = 1800

hay \(\widehat{AMC}\)+\(\widehat{CMN}\)=900+900 = 1800

hay A,M,N thẳng hàng

7 tháng 12 2016

cảm ơn bạn nhiều

 

24 tháng 4 2019

a)  Tam giác ABO và tam giác AEO có:

Góc AOB = góc AOE (=90 độ)

Góc BAO = góc EAO (AO là phân giác góc BAE)

Cạnh AO chung

=> tam giác ABO = tam giác AEO (g-c-g)    (1)

b)  Từ (1) => AB = AE => tam giác BAE cân tại A      (2)

c)  Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE 

=> AD là đường trung trực của BE

d)  Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.

Gọi H là giao điểm của EM và AB => EH  đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE

=> EM vuông góc AB

mà BC vuông góc AB (gt)

=> EM // BC

2 tháng 12 2015

a)vì ACFH là hình vuông => AC=CF=FH=HA
vì BCED là hình vuông => AC=CF=FH=HA
xét tam giác EFC và tam giác BCA có
                   BC=CE
                   CF=CA
                   FCE=ACB(đối đỉnh)
Vậy tam giác EFC bằng tam giác BCA(c-g-c)
b) chịu. một là đề sai, hai là mình chưa tìm ra cách