K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(f\left(x\right)=x^4-x^3+2x^2+3x\)

\(g\left(x\right)=x^4+x^3+2x^2\)

b: Hệ số tự do của f(x) là 0 và g(x) là 0

Hệ số cao nhất của f(x) là 1

Hệ số cao nhất của g(x) là 1

c: Bậc của f(x) là 4

Bậc của g(x) là 4

12 tháng 4 2022

\(f\left(x\right)=x^3-2x^2+3x+2\)

\(g\left(x\right)=-x^3-3x^2+2\)

12 tháng 4 2022

\(f\left(x\right)+g\left(x\right)=x^3-2x^2+3x+2+\left(-x^3\right)+3x^2+2\)

\(f\left(x\right)+g\left(x\right)=x^2+3x+4\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+3x+2+x^3+3x^2-2\)

\(f\left(x\right)-g\left(x\right)=2x^3+x^2+3x\)

23 tháng 6 2021

a, \(f\left(x\right)=2x^2+6x^4-3x^3+2011\)

\(=6x^4-3x^3+2x^2+2011\)

\(g\left(x\right)=2x^3-5x^2-3x^4-2012\)

\(=-3x^4+2x^3-5x^2-2012\)

b, \(f\left(x\right)+g\left(x\right)=6x^4-3x^3+2x^2+2011-3x^4+2x^3-5x^2-2012\)

\(=\left(6x^4-3x^4\right)+\left(2x^3-3x^3\right)+\left(2x^2-5x^2\right)+\left(2011-2012\right)\)

\(=3x^4-x^3-3x^2-1\)

\(f\left(x\right)-g\left(x\right)=6x^4-3x^3+2x^2+2011-\left(-3x^4+2x^3-5x^2-2012\right)\)

\(=6x^4-3x^3+2x^2+2011+3x^4-2x^3+5x^2+2012\)

\(=\left(6x^4+3x^4\right)-\left(3x^3+2x^3\right)+\left(2x^2+5x^2\right)+\left(2011+2012\right)\)

\(=9x^4-5x^3+7x^2+4023\)

Bài 1:

a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)

\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)

\(=2x-5\)

Bài 1: 

b) 

\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)

\(P\left(3\right)=2\cdot3-5=6-5=1\)

14 tháng 6 2020

................ =234567

a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)

\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)

b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)

\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)

8 tháng 4 2022

a)\(Q\left(x\right)=2x^3+4x^4-6x-5x^2+\dfrac{3}{2}\)

\(P\left(x\right)=2x^2-5x^4-8x+\dfrac{1}{2}\)

21 tháng 4 2022

`Answer:`

\(f\left(x\right)=5x-3x^2+2x^4-3x-x^4-5\)

\(=\left(2x^4-x^4\right)-3x^2+\left(5x-3x\right)-5\)

\(=x^4-3x^2+2x-5\)

\(g\left(x\right)=-2x^3+10x-1-7x^2+x^4-15x+10x^2\)

\(=x^4-2x^3+\left(-7x^2+10x^2\right)+\left(10x-15x\right)-1\)

\(=x^4-2x^3+3x^2-5x-1\)

\(f\left(x\right)+g\left(x\right)=\left(x^4-3x^2+2x-5\right)+\left(x^4-2x^3+3x^2-5x-1\right)\)

\(=\left(x^4+x^4\right)-2x^3+\left(-3x^2+3x^2\right)+\left(2x-5x\right)+\left(-5-1\right)\)

\(=2x^4-2x^3-3x-6\)

26 tháng 3 2020

1. \(f\left(x\right)=x+x^2-6x^3+3x^4+2x^2+6x-2x^4+1\)

\(\Rightarrow f\left(x\right)=7x+3x^2-6x^3+x^4+1\)

Sắp xếp theo lũy thừa giảm dần của biến x:

\(f\left(x\right)=x^4-6x^3+3x^2+7x+1\)

2. Bậc của đa thức: 4

Hệ số tự do: 1

Hệ số cao nhất: 7

3. \(f\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+3.\left(-1\right)^2+7.\left(-1\right)+1=4\)

\(f\left(0\right)=0^4-6.0^3+3.0^2+7.0+1=1\)

\(f\left(1\right)=1^4-6.1^3+3.1^2+7.1+1=6\)

\(f\left(-a\right)=\left(-a\right)^4-6.\left(-a\right)^3+3.\left(-a\right)^2+7.\left(-a\right)+1=3a+1\)

\(\)