Cho đường thẳng (d): y= (m-1)x + 4 (m\(\ne\)1). đường thẳng (d) cắt Ox tại A, cắt Oy tại B. Tìm m để diện tích tam giác OAB bằng 2?
Ai nhanh mình tick cho nhaaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là \(m\ne-\dfrac{1}{2}\) chứ.
\(x=0\Rightarrow y=-2\Rightarrow OB=2\)
\(y=0\Rightarrow x=\dfrac{2}{2m+1}\Rightarrow OA=\left|\dfrac{2}{2m+1}\right|\)
\(S_{\Delta OAB}=\dfrac{1}{2}.2.\left|\dfrac{2}{2m+1}\right|=\left|\dfrac{2}{2m+1}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left|2m+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)
Theo đề bài: \(\left\{{}\begin{matrix}A\in Ox\\B\in Oy\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}A\left(x_A;0\right)\\B\left(0;y_B\right)\end{matrix}\right.\).
Thay vào phương trình đường thẳng \(\left(d\right)\) ta được:
\(\left\{{}\begin{matrix}0=\left(2m+1\right)x_A-2\\y_B=\left(2m+1\right)\cdot0-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A=\dfrac{2}{2m+1}\\y_B=-2\end{matrix}\right.\).
Do đó: \(\left\{{}\begin{matrix}OA=\left|x_A\right|=\dfrac{2}{\left|2m+1\right|}\\OB=\left|y_B\right|=\left|-2\right|=2\end{matrix}\right.\)
\(\Delta OAB\left(\hat{O}=90^o\right)\) có: \(S=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\)
\(\Leftrightarrow OA\cdot OB=1\)
\(\Leftrightarrow\dfrac{2}{\left|2m+1\right|}\cdot2=1\Leftrightarrow\left|2m+1\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\left(TM\right)\\m=-\dfrac{5}{2}\left(TM\right)\end{matrix}\right.\).
a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A(1; 2).
2= (3m – 2).1 + m – 2
2=3m -2 +m -2
2=4m -4
6=4m
m =3/2
b) Đường thẳng (d) cắt Ox tại A, Oy tại B. Tìm m để diện tích ∆OAB bằng ½.
m <>2/3 ;2
A={(m-2)/(3m-2);0)
B={0;(m-2) )
diện tích ∆OAB =1/2 OA.OB
=> OA.OB=1
<=>(m-2)/(3m-2).(m-2) =±1
<=>(m-2)^2 =±(3m-2)
<=>(m^2-4m+4) =±(3m-2)
m^2 -7m +6 =0 => m={ 1; 6}
m^2 -m +2 =0 (vn)
m ={1;6 }
Cho x = 0 => y = m - 2
=> d cắt trục Oy tại B(0;m-2) => OB = | m - 2 |
Cho y = 0 => x = \(\frac{2-m}{3m-2}\)
=> d cắt trục Ox tại A(\(\frac{2-m}{3m-2}\);0) => \(OA=\left|\frac{2-m}{3m-2}\right|\)
Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}\left|\frac{\left(m-2\right)\left(2-m\right)}{3m-2}\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{-m^2-4+4m}{3m-2}\right|=1\)ĐK : \(\frac{-m^2-4+4m}{3m-2}\ge0\Leftrightarrow\frac{-\left(m-2\right)^2}{3m-2}\ge0\Leftrightarrow\frac{\left(m-2\right)^2}{3m-2}\le0\)
\(\Rightarrow3m-2< 0\Leftrightarrow m< \frac{2}{3}\)
TH1 : \(\frac{-m^2-4+4m}{3m-2}=1\Leftrightarrow-m^2-4+4m=3m-2\)
\(\Leftrightarrow m^2-m+2=0\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{11}{4}>0\)vậy pt vô nghiệm
TH2 : \(\frac{-m^2+4m-4}{3m-2}=-1\Leftrightarrow-m^2+4m-4=2-3m\)
\(\Leftrightarrow m^2-7m+6=0\Leftrightarrow m=1;m=6\)(ktmđk)
Vậy ko có giá trị m để SOAB = 1/2
d ∩ O y = B x B = 0 ⇒ y B = 4 ⇔ B 0 ; 4 ⇒ O B = 4 = 4 d ∩ O x = A y A = 0 ⇔ m 2 – 2 m + 2 x A + 4 = 0 x A = x A = − 4 m 2 − 2 m + 2 ⇒ A − 4 m 2 − 2 m + 2 ; 0 ⇒ O A − 4 m 2 − 2 m + 2
\ S Δ A O B = 1 2 O A . O B = 1 2 .4. − 4 m 2 − 2 m + 2 = 8 m − 1 2 + 1
Ta có m – 1 2 + 1 ≥ 1 ∀ m
Do đó S Δ A O B = 8 m − 1 2 + 1 ≤ 8 1 = 8
Dấu “=” xảy ra khi m – 1 = 0 ⇔ m = 1
Hay tam giác OAB có diện tích lớn nhất là 8 khi m = 1
Đáp án cần chọn là: A