A=1/2+1/8+1/32+1/128+1/512+1/2048
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128 = 256
256+256=512
512+512= 1024
1024+1024 = 2048
2048 + 2048 = 4096
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=256
256+256=512
512+512=1024
1024+1024=2048
2048+2048=4096
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
64+64=128
128+128=256
512+512=1024
2048+2048=4096
xong
\(\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\frac{1}{512}+\frac{1}{2048}\)
= \(\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\)
= \(\frac{341}{2048}\)
1+2+4+8+16+32+64+128+256+512+1024+2048
=1+(2+8)+(4+16)+(32+128)+(64+256)+(512+2048)+1024
=1+10+20+160+320+2560+1024
=4095
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = 4095
k nha công chúa nụ cười =_= ^_^
1/ 2 + 2 = 4
2/ 4 + 4 = 8
3/ 8 + 8 = 16
4/ 16 + 16 = 32
5/ 32 + 32 =64
6/ 64 + 64 =128
7/ 128 + 128 =256
8/ 256 + 256 =512
9/ 521 + 512 =1033
10/ 2048 + 2048 =4096
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+...+\left(\frac{1}{1024}-\frac{1}{2048}\right)\)
\(A=1-\frac{1}{2048}\)
\(\Rightarrow\)\(A=\frac{2047}{2048}\)
\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(3B-B=1-\frac{1}{2187}\)
\(2B=\frac{2186}{2187}\)
\(\Rightarrow B=\frac{2186}{4374}=\frac{1093}{2187}\)
đề phải là 1 +1/2 + 1/4 +1/32 + 1/64 + 1/128 +1/256 +/512 +1/1024 moi dug
A = 1/2 + 1/4 + 1/8 + ... + 1/1024
2A = 1 + 1/2 + 1/4 + ... + 1/512
2A - A = (1 + 1/2 + 1/4 + ... + 1/512) - (1/2 + 1/4 + 1/8 + ... + 1/1024)
A = 1 - 1/1024
A = 1023/1024
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+......+\frac{1}{512}\)
\(\Rightarrow A=2A-A=1-\frac{1}{1024}\)
\(A=\frac{1023}{1024}\)
Đề bài: Tính
\(A=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\frac{1}{512}+\frac{1}{2048}\)
\(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\)
\(2^2.A=2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)
\(4A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\right)\)
\(3A=2-\frac{1}{2^{11}}\)
\(\Rightarrow A=\frac{2-\frac{1}{2^{11}}}{3}\)
Vậy \(A=\frac{2-\frac{1}{2^{11}}}{3}\).
ta có
A= 1/2+ 1/8+1/32+1/128+1/512+1/2048
=> A= 1/2 +1/ 2^3 +1/2^5 +1/2^7+1/2^9+1/2^11
=> 2^2 A=2+1/2+1/2^3+1/2^5+1/2^7+1/2^9
=> 2^2A-A= (2+1/2+1/2^3+1/2^5+1/2^7+1/2^9)-(1/2+1/2^3+/2^5+1/2^7+1/2^9+1/2^11)
=> 3A= 2- 1/2^11
=>3A= 4095/2048
=> A= 1365/2048