Trong mặt phẳng với hệ tọa độ Oxy cho ΔABC có A(1;2), B(0;-1) và C(-1;3).
1/ Tìm tọa độ hình chiếu của A trên đường thẳng BC, tính diện tích ΔABC
2/ Viết phương trình đường tròn tâm B và tiếp xúc với đường thẳng AC.
3/ Viết phương trình thẳng đi qua O và cắt AB, AC tại M, N sao cho O là trung điểm của M,N
Giúp mình với mng!!!
2/ \(\overrightarrow{CA}=\left(2;-1\right)\Rightarrow\) phương trình AC có dạng:
\(1\left(x-1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-5=0\)
Đường tròn tâm B tiếp xúc AC khi và chỉ khi:
\(R=d\left(B;AC\right)=\frac{\left|0.1+2.\left(-1\right)-5\right|}{\sqrt{1^2+2^2}}=\frac{7}{\sqrt{5}}\)
Phương trình đường tròn: \(x^2+\left(y+1\right)^2=\frac{49}{5}\)
3/ \(\overrightarrow{BA}=\left(1;3\right)\Rightarrow\) pt AB:
\(3\left(x-1\right)-1\left(y-2\right)=0\Leftrightarrow3x-y-1=0\)
M thuộc AB nên tọa độ có dạng: \(M\left(m;3m-1\right)\)
N thuộc AC nên tọa độ có dạng: \(N\left(5-2n;n\right)\)
O là trung điểm của MN nên: \(\left\{{}\begin{matrix}m+5-2n=0\\3m-1+n=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-\frac{3}{7}\\n=\frac{16}{7}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}M\left(-\frac{3}{7};-\frac{16}{7}\right)\\N\left(\frac{3}{7};\frac{16}{7}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MN}=\left(\frac{6}{7};\frac{32}{7}\right)=\frac{2}{7}\left(3;16\right)\)
Phương trình MN: \(16\left(x+\frac{3}{7}\right)-3\left(y+\frac{16}{7}\right)=0\)
a/ \(\overrightarrow{CB}=\left(1;-4\right)\Rightarrow BC=\sqrt{17}\)
Phương trình BC: \(4\left(x-0\right)+1\left(y+1\right)=0\Leftrightarrow4x+y+1=0\)
Gọi H là hình chiếu vuông góc của A lên BC \(\Rightarrow AH\perp BC\Rightarrow\) đường thẳng AH nhận \(\left(1;-4\right)\) là 1 vtpt
Phương trình AH: \(1\left(x-1\right)-4\left(y-2\right)=0\Leftrightarrow x-4y+7=0\)
H là giao điểm AH và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}4x+y+1=0\\x-4y+7=0\end{matrix}\right.\) \(\Rightarrow H\left(-\frac{11}{17};\frac{27}{17}\right)\)
\(\Rightarrow\overrightarrow{AH}=\left(-\frac{28}{17};-\frac{7}{17}\right)\Rightarrow AH=\frac{7\sqrt{17}}{17}\)
\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{7}{2}\)