K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016
  • \(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy=16x^2y^2+12\left(x^3+y^3\right)+34xy\)

\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)

\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)

\(=16x^2y^2-2xy+12\)

Đặt \(t=xy\) thì \(B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)

Vậy min B \(=\frac{191}{16}\) khi \(\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)

  • Như trên ta có : \(B=16\left(xy-\frac{1}{16}\right)^2+\frac{191}{16}\)

Mặt khác, áp dụng BĐT Cauchy , ta có : \(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)

Suy ra : \(B\le16\left(\frac{1}{4}-\frac{1}{16}\right)^2+\frac{191}{16}=\frac{25}{2}\)

Đẳng thức xảy ra khi x = y = 1/2

Vậy max B = 25/2 khi (x;y) = (1/2;1/2)

1 tháng 7 2020

Đặt \(a=3x^2+xy+2y^2=>0\le a\le2\)

xét 2 TH

+) Nếu a=0 thì x=y=0 nên P =0

+) nếu \(a\ne0\)thì x hoặc y phải khác 0

xét biểu thức

\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}\)

nếu y=0 thì \(x\ne0=>\frac{P}{a}=\frac{1}{3}< P=\frac{a}{3}\le\frac{2}{3}\)

-xét TH y khác 0 , khi đó đặt \(t=\frac{x}{y}\), ta có

\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}=\frac{t^2+3t-1}{3t^2+t+2}\)

gọi m là một giá trị \(\frac{P}{a}\), khi đó PT sau có nghiệm

\(m=\frac{t^2+3t-1}{3t^2+t+2}\)

\(=>\left(3m-1\right)t^2+\left(m-3\right)t+2m+1=0\left(1\right)\)

nếu \(m=\frac{1}{3}\left(thì\right)t=\frac{5}{8}.Nếu\left(m\ne\frac{1}{3}\right)thì\left(1\right)\)là PT bậc 2 có nghiệm khi zà chỉ khi

\(\left(m-3\right)^2-4\left(3m-1\right)\left(2m+1\right)\ge0\)

\(\Leftrightarrow23m^2+10m-13\le0\Leftrightarrow m\le\frac{13}{23}=>-1\le\frac{P}{a}\le\frac{26}{23}\)

mà a>0 nên \(-2\le-a\le P\le\frac{13}{23}a\le\frac{26}{23}\)

kết hợp những TH zừa xét lại ta có

\(-2\le P\le\frac{26}{23}\)

1 tháng 7 2020

làm tiếp nè , mình phải làm tách ra không sợ nó lag

\(P=-2\)khi zà chỉ khi 

\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=-\frac{1}{2}\\3x^2+xy+2y^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}y=-2x\\3x^2-2x^2+8x^2=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-2x\\x=\pm\frac{\sqrt{2}}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{\sqrt{2}}{3}\\y=\mp\frac{2\sqrt{2}}{3}\end{cases}}}\)

zậy MinP=-2 khi ....

+) MaxP nhé

\(P=\frac{26}{13}\)khi

\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=\frac{7}{4}\\3x^2+xy+2y^2=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}y\\3\left(\frac{7}{4}y\right)+\frac{7}{4}y^2+2y^2=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{7}{4}y\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{7}{3}\sqrt{\frac{2}{23}}\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}}}\)

zậy ....

16 tháng 6 2019

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

16 tháng 6 2019

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

9 tháng 4 2018

Ta có 

P = x 2 4 + 8 y + y 2 1 + x = x 2 4 + 8 y + 2 y 2 4 + 4 x ≥ x + 2 y 2 8 + 4 x + 2 y

Dấu “=” xảy ra khi x = 2y

Đặt t = x + 2y; t ≥ 8 . Khi đó  P ≥ t 2 8 + 4 t

Xét hàm số  f t = t 2 8 + 4 t , t ∈ [ 8 ; + ∞ )

Suy ra f(t) đồng biến trên [ 8 ; + ∞ )  nên  f t ≥ f 8 = 8 5 Vậy m a x P = 8 5 ⇔ x = 4 ; y = 2

Đáp án A

6 tháng 9 2019

Xét hàm  trên  ℝ  và đi đến kết quả 

NV
10 tháng 4 2021

\(x\ge xy+1\Rightarrow1\ge y+\dfrac{1}{x}\ge2\sqrt{\dfrac{y}{x}}\Rightarrow\dfrac{y}{x}\le\dfrac{1}{4}\)

\(Q^2=\dfrac{x^2+2xy+y^2}{3x^2-xy+y^2}=\dfrac{\left(\dfrac{y}{x}\right)^2+2\left(\dfrac{y}{x}\right)+1}{\left(\dfrac{y}{x}\right)^2-\dfrac{y}{x}+3}\)

Đặt \(\dfrac{y}{x}=t\le\dfrac{1}{4}\) 

\(Q^2=\dfrac{t^2+2t+1}{t^2-t+3}=\dfrac{t^2+2t+1}{t^2-t+3}-\dfrac{5}{9}+\dfrac{5}{9}\)

\(Q^2=\dfrac{\left(4t-1\right)\left(t+6\right)}{9\left(t^2-t+3\right)}+\dfrac{5}{9}\le\dfrac{5}{9}\)

\(\Rightarrow Q_{max}=\dfrac{\sqrt{5}}{3}\) khi \(t=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(2;\dfrac{1}{2}\right)\)