K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 6 2020

\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosa}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{2}-1\right)}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+cos^2\frac{a}{2}-\frac{1}{2}}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{a}{2}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{4}-1\right)}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{a}{4}}=\sqrt{\frac{1}{2}+\frac{1}{2}\left(cos^2\frac{a}{8}-1\right)}\)

\(=cos\frac{a}{8}\Rightarrow n=8\)

Y
13 tháng 6 2019

2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)

\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)

+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)

\(\Rightarrow A< \frac{1}{2}\)

Y
13 tháng 6 2019

1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(\Rightarrow A< 2\)

Bài 2 tạm thời chưa nghĩ ra :))

13 tháng 6 2019

Đặt B là tên biểu thức

Với mọi n thuộc N*, ta có: 

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) (*)

Áp dụng (*), ta được: 

\(B< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2013}}\right)=2-\frac{1}{\sqrt{2013}}< 2\)

13 tháng 7 2016

a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)

\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)

\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)

\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)

b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)

\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)

C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)

\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)

\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)

\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)

d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)

\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)

e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)

Cho e xin cảm ơn trc ak

13 tháng 7 2016

a) \(\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}+\frac{1}{\sqrt{ab}}\right).\sqrt{ab}\) (ĐK : \(\hept{\begin{cases}a>0\\b>0\end{cases}}\)hoặc \(\hept{\begin{cases}a< 0\\b< 0\end{cases}}\))

\(=ab+2b-a+1\)

b) \(\left(-\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}.\sqrt{mn}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\) (ĐK bạn tự xét nhé ^^)

\(=\left(-\frac{a\sqrt{mn}}{b}-\frac{ab\sqrt{m}}{\sqrt{n}}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\)

\(=a^2b^2\left(\frac{-an}{b}-ab+\frac{a^2}{b^2}\right)=-a^3bn-a^3b^3+a^4=a^3\left(a-bn-b^3\right)\)

20 tháng 10 2023

1: Khi x=9 thì \(A=\dfrac{3+1}{3-1}=\dfrac{4}{2}=2\)

2:

a: \(P=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: \(2P=2\sqrt{x}+5\)

=>\(P=\sqrt{x}+\dfrac{5}{2}\)

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\dfrac{5}{2}=\dfrac{2\sqrt{x}+5}{2}\)

=>\(\sqrt{x}\left(2\sqrt{x}+5\right)=2\sqrt{x}+2\)

=>\(2x+3\sqrt{x}-2=0\)

=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)

=>\(2\sqrt{x}-1=0\)

=>x=1/4

20 tháng 10 2023

Bạn có thể làm hộ mình câu c được không?Nếu được thì mình cảm ơn bạn nhiều!

 

23 tháng 6 2015

\(y=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(y=1-\frac{1}{10}=\frac{9}{10}\)