K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2020

Đáp án là đcmm

Cho tam giác ABC  ( AC > AB ) tia phân giác của góc A cắt BC ở D . Gọi I là trung điểm của BC . Đường thẳng qua I vuông góc với AD cắt AB , AC  lần lượt tại M và N . Kẻ BE song song với AC (E∈MN) 

a) Chứng minh tam giác IBE = tam giác ICN

b) Chứng minh tam giác AMN cân

c) Biết góc BAC = 700 . Tính góc BEN

d) Chứng minh CD > BD

e) Tam giác ABC cần có thêm điều kiện gì để tam giác BME là tam giác đều

GIÚP MÌNH VỚI, MAI NỘP RỒI !!!

16 tháng 7 2020

A A A B B B C C C D D D E E E N N N O O O I I I H H H M M M

a) Xét \(\Delta_vMDB\) và \(\Delta_vNEC\) có :

BD = CE(đầu đề ghi BD = BE là sai rồi nhá)

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)

=> \(\Delta_vMDB=\Delta_vNEC\)(cgv - gn)

=> DM = EN(hai cạnh tương ứng)

b) Xét \(\Delta_vMDI\) và \(\Delta_vNEI\)có :

DM = EN(theo câu a)

\(\widehat{MDI}=\widehat{NEI}\)(đối đỉnh)

=> \(\Delta_vMDI=\Delta_vNEI\left(cgv-gn\right)\)

=> IM = IN(hai cạnh tương ứng)

=> BC cắt MN tại I

=> I là tđ của MN

c) Gọi H là chân đường vuông góc kẻ từ A xuống BC

Xét \(\Delta_vAHB\) và \(\Delta_vAHC\)có :

AB = AC(tam giác ABC cân tại A)

AH chung

=> \(\Delta_vAHB=\Delta_vAHC\left(ch-cgv\right)\)

=> \(\widehat{HAB}=\widehat{HAC}\)

Gọi O là giao điểm của AH với đường thẳng vuông góc với MN kẻ từ I 

Xét tam giác OAB và tam giác OAC có :

OA chung

AB = AC(tam giác ABC cân tại A)

góc B = góc C(tam giác ABC cân tại A)

=> tam giác OAB = tam giác OAC(c.g.c)

=> góc OBC = góc OCA (1)

Xét tam giác vuông OIM và tam giác vuông OIN có :

OI chung

IM = IN(theo câu b)

=> tam giác vuông OIM = tam giác vuông OIN(hai cạnh góc vuông)

=> OM = ON(hai cạnh tương ứng)

Xét tam giác OBM và tam giác OCN có :

OM = ON(cmt)

OB = OC(tam giác OAB = tam giác OAC)

BM = CN(tam giác MDB = tam giác NEC)

=> tam giác OBM = tam giác OCN(c.c.c)

=> góc OBM = góc OCM  (2)

Từ (1) và (2) => góc OCA = góc OCN = 90 độ , do đó \(OC\perp AC\)

Vậy điểm O cố định

Câu a, DM = EN chứ k phải DM = ED

16 tháng 7 2020

AB=AC mà

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

a: Xét ΔAMN có

Ax vừa là đường cao, vừa là phân giác

=>ΔAMN cân tại A

b: BE//AC

=>góc BEM=góc ANE

=>góc BEM=góc BME

=>BE=BM

Xét ΔDEB và ΔDNC có

góc DBE=góc DCN

DB=DC

góc BDE=góc NDC

=>ΔDEB=ΔDNC

=>BE=NC

=>BE=CN

24 tháng 7 2021

Gọi K là giao điểm của DN và BE
Ta có :
ΔBKD vuông tại K có:
^BDK + ^DBK = 90 độ (1)
ΔABC vuông tại A có:
^ABE + ^BEA = 90 độ (2)
Từ (1) và (2)
=> ^BDK = ^BEA = ^IDA (vì BDK và IDA là 2 góc đối đỉnh)
Xét Δ DAI vuông tại A và Δ EAB vuông tại A có:
AD = AE (gt)
^IDA = ^BEA (cmt)
==> Δ DAI = Δ EAB (cạnh góc vuông và góc nhọn kề)
=> AI = AB = AC (2 cạnh tương ứng)
=> A là trung điểm của CI (đpcm)

25 tháng 7 2021

b) Gọi H là giao điểm của AM và BE
Có :
IK _|_ BE (gt)
AH _|_ BE (gt)
=> IK // AH
hay : IN // AM
Mà :
AI = IC (câu a)
=> MN = MC (hệ quả của tính chất đường trung bình trong tam giác)
Vậy MN = MC