Cho 2 đg tròn:
(C1): \(x^2+y^2=4\)
(C2): \(\left(x+10\right)^2+\left(y-16\right)^2=1\)
Trong khẳng đinh sau, khẳng định nào đúng
a. tiếp xúc ngoài
b. tieps xúc trong
c. cắt nhau
d. k cắt nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I(x,y) có tung độ dương nên y>0 và thuộc (d)
nên I(x;-3x-4)
y>0
=>-3x-4>0
=>-3x>4
=>x<-4/3
Theo đề, ta có: d(I;Ox)=d(I;Oy)=R
(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|
=>3x+4=x hoặc -3x-4=x
=>2x=-4 hoặc -4x=4
=>x=-2(nhận) hoặc x=-1(loại)
=>I(-2;2)
R=|2|=2
=>(C): (x+2)^2+(y-2)^2=4
=>B
I(x,y) có tung độ dương nên y>0 và thuộc (d)
nên I(x;-3x-4)
y>0
=>-3x-4>0
=>-3x>4
=>x<-4/3
Theo đề, ta có: d(I;Ox)=d(I;Oy)=R
(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|
=>3x+4=x hoặc -3x-4=x
=>2x=-4 hoặc -4x=4
=>x=-2(nhận) hoặc x=-1(loại)
=>I(-2;2)
R=|2|=2
=>(C): (x+2)^2+(y-2)^2=4
=>B
Gọi M là điểm tiếp xúc hai đường tròn.
Đường tròn đã cho có tâm \(I'=\left(1;3\right)\), bán kính \(R'=2\)
\(\Rightarrow II'=\sqrt{\left(1+4\right)^2}=5\)
\(\Rightarrow\) Bán kính đường tròn cần tìm \(R=3\)
Phương trình đường tròn: \(\left(x+4\right)^2+\left(y-3\right)^2=9\)
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
(C1) có tâm \(O\left(0;0\right)\) bán kính \(R=2\)
(C2) tâm \(I\left(-10;16\right)\) bán kính \(R'=1\)
\(\overrightarrow{OI}=\left(-10;16\right)\Rightarrow OI=2\sqrt{89}>R+R'\)
\(\Rightarrow\) hai đường tròn không cắt nhau