K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

a) D = 4x^2 + 4xy + 5xy + 5y^2 - 4x^2 = 5y^2 + 9xy

 

26 tháng 6 2022

D=-xy+5y^2

31 tháng 3 2018

1/

a/ Đặt f (x) = x2 - 3

Khi f (x) = 0

=> \(x^2-3=0\)

=> \(x^2=3\)

=> \(x=\sqrt{3}\)

Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.

b/ Đặt g (x) = x2 + 2

Khi g (x) = 0

=> \(x^2+2=0\)

=> \(x^2=-2\)

=> \(x\in\varnothing\)

Vậy x2 + 2 vô nghiệm.

c/ Đặt P (x) = x2 + (x2 + 3)

Khi P (x) = 0

=> \(x^2+\left(x^2+3\right)=0\)

=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)

Vậy x2 + (x2 + 3) vô nghiệm.

d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)

Khi Q (x) = 0

=> \(2x^2-\left(1+2x^2\right)+1=0\)

=> \(2x^2-\left(1+2x^2\right)=-1\)

=> \(2x^2-1-2x^2=-1\)

=> -1 = -1

Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.

e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)

Khi h (x) = 0

=> \(\left(2x-1\right)^2-16=0\)

=> \(\left(2x-1\right)^2=16\)

=> \(2x-1=4\)

=> 2x = 5

=> \(x=\frac{5}{2}\)

Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).

`@` `\text {Ans}`

`\downarrow`

`4,`

`a)`

\(f(x)=x(1-2x) + (2x^2 -x +4 )=0\)

`=> x-2x^2 + 2x^2-x+4=0`

`=> (x-x)+(-2x^2+2x^2)+4=0`

`=> 4=0 (\text {vô lí})`

Vậy, đa thức không có nghiệm.

`b)`

\(g(x) = x(x-5) - x(x+2)+ 7x=0\)

`=> x^2-5x-x^2-2x+7x=0`

`=> (x^2-x^2)+(-5x-2x+7x)=0`

`=> 0=0 (\text {luôn đúng})`

Vậy, đa thức có vô số nghiệm.

`c)`

\(h(x)= x(x-1) +1=0\)

`=> x^2-x+1=0`

Vì \(x^2 \ge 0\) \(\forall\) `x`

`=> x^2 - x + 1 \ge 1`\(\forall x\)

`1 \ne 0`

`=>` Đa thức vô nghiệm.

`\text {#KaizuulvG}`

Câu \(b,\) là \(x\in R\) cậu nhé!

`@` `\text {Ans}`

`\downarrow`

`1,`

`a)`

\(A(x) = 5x^5 + 2 - 7x - 4x^2 - 2x^5\)

`= (5x^5 - 2x^5) - 4x^2 - 7x + 2`

`= 3x^5 - 4x^2 - 7x + 2`

`b)`

`A(x)+B(x)`

`=`\((3x^5 - 4x^2 - 7x + 2)+(-3x^5 + 4x^2 + 3x - 7)\)

`= 3x^5 - 4x^2 - 7x + 2-3x^5 + 4x^2 + 3x - 7`

`= (3x^5 - 3x^5) + (-4x^2 + 4x^2) + (-7x + 3x) + (2-7)`

`= -4x - 5`

`b)`

`A(x) - B(x)`

`= 3x^5 - 4x^2 - 7x + 2 + 3x^5 - 4x^2 - 3x + 7`

`= (3x^5 + 3x^5) + (-4x^2 - 4x^2) + (-7x - 3x) + (2+7)`

`= 6x^5 - 8x^2 - 10x + 9`

`c)`

Thay `x=-1` vào đa thức `A(x)`

` 3*(-1)^5 - 4*(-1)^2 - 7*(-1) + 2`

`= 3*(-1) - 4*1 + 7 + 2`

`= -3 - 4 + 7 + 2`

`= -7+7 + 2`

`= 2`

Bạn xem lại đề ;-;.

`2,`

`M =` \(( 3 x - 2 )( 2 x + 1 )-( 3 x + 1 )( 2 x - 1 )\)

`= 3x(2x+1) - 2(2x+1) - [3x(2x-1) + 2x - 1]`

`= 6x^2 + 3x - 4x - 2 - (6x^2 - 3x + 2x - 1)`

`= 6x^2 - x - 2 - (6x^2 - x - 1)`

`= 6x^2 - x - 2 - 6x^2 + x + 1`

`= (6x^2 - 6x^2) + (-x+x) + (-2+1)`

`= -1`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.

2:

M=6x^2+3x-4x-2-6x^2+3x-2x+1

=-1

1;

a: A(x)=3x^5-4x^2-7x+2

b: B(x)=-3x^5+4x^2+3x-7

B(x)+A(x)

=-3x^5-4x^2-7x+2+3x^5+4x^2+3x-7

=-4x-5

A(x)-B(x)

=-3x^5-4x^2-7x+2-3x^5-4x^2-3x+7

=-6x^5-8x^2-10x+9

 

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe