Giúp câu c với em cám ơn mn. Toán 8. Cho tam giác abc vuông tại a đg cao ah
A. Cm ah^2 = hb.hc
B. Gọi BK là đg phân giác ( k thuộc ac ), I là giao điểm ah và bk.
Cm AI.KA = IH.AC
C. Cho AB = 6, BC = 10. Tính S ABI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
) Chứng minh Δ EBF đồng dạng Δ EDC Tam giac EDC dong dang tam giac ADF(g,g,g)=> Goc AFD = goc ECD Ma AFD = 90 - goc B => Goc EDC = Goc BXet tam giac vuong EBF va tam giac vuong EDC ta co:+) Goc A1 = goc E = 90+) Goc B = Goc EDC+) Goc BFE = Goc C=> Δ EBF đồng dạng Δ EDC
b) Ta có: KI\(\perp\)BC(gt)
AH\(\perp\)BC(gt)
Do đó: KI//AH(Định lí 1 từ vuông góc tới song song)
Suy ra: \(\widehat{HAI}=\widehat{KIA}\)(hai góc so le trong)(1)
Ta có: ΔABK=ΔIBK(cmt)
nên KA=KI(hai cạnh tương ứng)
Xét ΔKAI có KA=KI(cmt)
nên ΔKAI cân tại K(Định nghĩa tam giác cân)
Suy ra: \(\widehat{KAI}=\widehat{KIA}\)(hai góc ở đáy)(2)
Từ (1) và (2) suy ra \(\widehat{HAI}=\widehat{KAI}\)
\(\Leftrightarrow\widehat{HAI}=\widehat{CAI}\)
Suy ra: AI là tia phân giác của \(\widehat{HAC}\)(Đpcm)
a) Xét ΔABK vuông tại A và ΔIBK vuông tại I có
BK chung
\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))
Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)
HM _|_ AB (gt)
AB _|_ AC do tam giác ABC vuông tại A (gt)
AN; HM phân biệt
=> AN // HM (tc)
=> góc NAH = góc AHM (slt)
xét tam giác NAH và tam giác MHA có : AH chung
góc ANH = góc AMH = 90
=> tam giác NAH = tam giác MHA (ch-gn)
=> HM = AN (đn)
b, NA = HM (câu a)
xét tam giác NAM và tam giác HMA có : AM chung
góc NAM = góc HMA = 90
=> tam giác NAM = tam giác HMA (2cgv)
=> AH = MN (đn)
c, AN // HM (câu a)
=> góc NAH = góc AHM (slt) và góc ANM = góc NMH (slt)
xét tam giác NAI và tam giác MHI có : AN = MH (câu a)
=> tam giác NAI = tam giác MHI (g-c-g)
=> NI = IM (đn)
d,
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔDAH có DI/DH=DO/DA
nen Io//AH và IO=AH/2
=>AH=2OI
a: Xét ΔABC vuông tại B có BK là đường cao
nên \(\dfrac{1}{BK^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\)
hay BK=4,8cm
b: Xét ΔABC vuông tại B có BK là đường cao
nên \(AK\cdot AC=BA^2\)
\(\Leftrightarrow AK\cdot AC=\left(2\cdot AI\right)^2=4\cdot AI^2\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AHchung
Do đo: ΔAHB=ΔAHC
b: HB=HC=BC/2=3cm
=>AH=4cm
c: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
Do đó: ΔABM=ΔACN
Suy ra BM=CN
Xét ΔNBC và ΔMCB có
NB=MC
NC=MB
BC chung
Do đo: ΔNBC=ΔMCB
Suy ra: góc KBC=góc KCB
=>ΔKBC cân tại K
=>KB=KC
=>KN=KM
hay ΔKNM cân tại K
d: Xét ΔABC có AN/AB=AM/AC
nên NM//BC