K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

Bạn xem lại ý a ( đề bài ) nhé. Mk nghĩ nó ntn 

undefined

28 tháng 8 2021

 C ơn

 

16 tháng 2 2021

) Chứng minh Δ EBF đồng dạng Δ EDC Tam giac EDC dong dang tam giac ADF(g,g,g)=> Goc AFD = goc ECD Ma AFD = 90 - goc B  => Goc EDC = Goc BXet tam giac vuong EBF va tam giac vuong EDC ta co:+) Goc A1 = goc E = 90+) Goc B = Goc EDC+) Goc BFE = Goc C=> Δ EBF đồng dạng Δ EDC

b) Ta có: KI\(\perp\)BC(gt)

AH\(\perp\)BC(gt)

Do đó: KI//AH(Định lí 1 từ vuông góc tới song song)

Suy ra: \(\widehat{HAI}=\widehat{KIA}\)(hai góc so le trong)(1)

Ta có: ΔABK=ΔIBK(cmt)

nên KA=KI(hai cạnh tương ứng)

Xét ΔKAI có KA=KI(cmt)

nên ΔKAI cân tại K(Định nghĩa tam giác cân)

Suy ra: \(\widehat{KAI}=\widehat{KIA}\)(hai góc ở đáy)(2)

Từ (1) và (2) suy ra \(\widehat{HAI}=\widehat{KAI}\)

\(\Leftrightarrow\widehat{HAI}=\widehat{CAI}\)

Suy ra: AI là tia phân giác của \(\widehat{HAC}\)(Đpcm)

a) Xét ΔABK vuông tại A và ΔIBK vuông tại I có 

BK chung

\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))

Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)

27 tháng 7 2019

A B C H M N I

HM _|_ AB (gt) 

AB _|_ AC do tam giác ABC vuông tại  A (gt)

AN; HM phân biệt 

=> AN // HM (tc)

=> góc NAH = góc AHM (slt)

xét tam giác NAH và tam giác MHA có : AH chung

góc ANH = góc AMH = 90 

=> tam giác NAH = tam giác MHA (ch-gn)

=> HM = AN (đn)

b,  NA = HM (câu a)

xét tam giác NAM và tam giác HMA có : AM chung

góc NAM = góc HMA = 90 

=> tam giác NAM = tam giác HMA (2cgv)

=> AH = MN (đn)

c, AN // HM (câu a)

=> góc NAH = góc AHM (slt) và góc ANM = góc NMH (slt)

xét tam giác NAI và tam giác MHI có : AN = MH (câu a)

=> tam giác NAI = tam giác MHI (g-c-g)

=> NI = IM (đn)

d,  A B C H M N I

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

 

a: Xét ΔABC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\)

hay BK=4,8cm

b: Xét ΔABC vuông tại B có BK là đường cao

nên \(AK\cdot AC=BA^2\)

\(\Leftrightarrow AK\cdot AC=\left(2\cdot AI\right)^2=4\cdot AI^2\)

 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AHchung

Do đo: ΔAHB=ΔAHC

b: HB=HC=BC/2=3cm

=>AH=4cm

c: Xét ΔABM và ΔACN có

góc ABM=góc ACN

AB=AC
góc BAM chung

Do đó: ΔABM=ΔACN

Suy ra BM=CN

Xét ΔNBC và ΔMCB có

NB=MC

NC=MB

BC chung

Do đo: ΔNBC=ΔMCB

Suy ra: góc KBC=góc KCB

=>ΔKBC cân tại K

=>KB=KC

=>KN=KM

hay ΔKNM cân tại K

d: Xét ΔABC có AN/AB=AM/AC

nên NM//BC