ho dơn thức A=3.(a^2+1/a^2).x^2.y^4.z^6 với a là hằng số: chứng minh đơn thức A luôn khong âm với mọi x,y,z và với giá trị nào của x,y,z thì A=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2,x^2,y^4,z^6\ge0\)với \(\forall a,x,y,z\)
Dấu "=" xảy ra khi \(a=x=y=z=0\)
Lại có: \(3\left(a^2+\frac{1}{a^2}\right)\)khác 0 với \(\forall a\)
Do đó để A = 0 thì x = 0 hoặc y = 0 hoặc z = 0
đơn thức là học ở lớp 7
các bài này có trong lớp 7
=>đó là bài lớp 7
=>đpcm
a)Thu gọn đơn thức:
B=4x2y2z(-3x2z)
B=16xyz(-6xz)
B=-96x2yz2
Hệ số:-96
Phần biến: x2yz2
b)Thay x=-2,y=-1,z=1 vào B=-96x2yz2có
B=-96*(-2)2*(-1)*12
B=-96*4*(-1)*1
B=-96*(-4)
B=384
Câu c) hình như sai đề :DD
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm E, Trên tia đối của tia CB lấy điểm N sao cho EB = BC = CN
a)Chứng minh rằng tam giác AEN cân
b)kẻ BH vuông góc với AE (H thuộc cạnh AE)
kẻ CK vuông góc với AN (K thuộc cặp AN)
Chứng minh rằng tam giác HBE bằng tam giác KCN
a) ta có \(a^2\ge0;\dfrac{1}{a^2}\ge0\Rightarrow a^2+\dfrac{1}{a^2}\ge0\)
suy ra \(3\left(a^2+\dfrac{1}{a^2}\right)\ge0;\)và \(x^2\ge0;y^4\ge0;z^6\ge0\Rightarrow x^2y^4z^6\ge0\)
suy ra \(A=3\left(a^2+\dfrac{1}{a^2}\right)x^2y^4z^6\ge0\)
vậy đơn thức A luôn luôn không âm với mọi biến x, y, z
b) muốn A = 0 thì (x;y;z) = (0;0;0)
\(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\)
Ta có : \(a^2;\left(\frac{1}{a}\right)^2\ge0\forall a\Rightarrow3\left(a^2+\left(\frac{1}{a}\right)^2\right)\ge0\forall a\)
\(x^2;y^4;z^6\ge0\forall x;y;z\)
=> \(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\ge0\)
=> A luôn nhận giá trị không âm với mọi x, y, z
Để A = 0 => Ít nhất một giá trị = 0
=> Hoặc x = 0 ; y = 0 ; z = 0 thì A = 0