K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ko hiểu cách này, ib chỉ cho cách khác nhé ! ( ko thể hiện )

\(\left(x^2+x-6\right)\left(x^2+x-4\right)=0\)

TH1 : \(x^2+x-6=0\)

\(\Delta=1^2-4.\left(-6\right)=1+24=25>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-1-\sqrt{25}}{2}=\frac{-1-5}{2}=-\frac{6}{2}=-3\)

\(x_2=\frac{-1+\sqrt{25}}{2}=\frac{-1+5}{2}=\frac{4}{2}=2\)

TH2 : \(x^2+x-4=0\)

\(\Delta=1^2-4.\left(-4\right)=1+16=17>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-1-\sqrt{17}}{2};x_2=\frac{-1+\sqrt{17}}{2}\)

20 tháng 7 2021

`4(x-6)-x^2 (2+3x)+x(5x-4)+3x^2 (x-1)`

`=4x-24-2x^2 -3x^3 +5x^2-4x+3x^3-3x^2`

`=-24`

20 tháng 7 2021

\(4\left(x-6\right)-2x\left(2+3x\right)+x\left(5x-4\right)+3x2\left(x-1\right)\\ =4x-24-4x-6x^2+5x^2-4x+6x^2+6x\\ =2x+5x^2-24\)

a: =>2x>-6

hay x>-3

e: =>(5-x)/x<0

=>0<x<5

h: \(\Leftrightarrow\dfrac{x+5-x-3}{x+3}< 0\)

\(\Leftrightarrow x+3< 0\)

hay x<-3

g: \(\Leftrightarrow\dfrac{2x+7}{x+4}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{7}{2}\\x< -4\end{matrix}\right.\)

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

8 tháng 9 2019

a) \(5^n.25=125^2\)

\(\Rightarrow5^n.5^2=\left(5^3\right)^2\)

\(\Rightarrow5^n.5^2=5^6\)

\(\Rightarrow5^n=5^6:5^2\)

\(\Rightarrow5^n=5^4\)

\(\Rightarrow n=4\)

Vậy \(n=4.\)

b) \(3^n.9^2=27^3\)

\(\Rightarrow3^n.\left(3^2\right)^2=\left(3^3\right)^3\)

\(\Rightarrow3^n.3^4=3^9\)

\(\Rightarrow3^n=3^9:3^4\)

\(\Rightarrow3^n=3^5\)

\(\Rightarrow n=5\)

Vậy \(n=5.\)

c) \(2^4.4^n=8^6\)

\(\Rightarrow\left(2^2\right)^2.4^n=2^{18}\)

\(\Rightarrow4^2.4^n=\left(2^2\right)^9\)

\(\Rightarrow4^2.4^n=4^9\)

\(\Rightarrow4^n=4^9:4^2\)

\(\Rightarrow4^n=4^7\)

\(\Rightarrow n=7\)

Vậy \(n=7.\)

Chúc bạn học tốt!

8 tháng 9 2019

Cảm ơn bn nhiều lắm !

22 tháng 12 2021

=-42x100=-4200

22 tháng 12 2021

=-42x100=-4200

30 tháng 8 2021

1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)

\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)

2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)

\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)

4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) 

\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

30 tháng 8 2021

3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)

\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)

\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)

2 tháng 11 2021

\(a,\Rightarrow3x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\\ b,\Rightarrow\left(x-3\right)\left(2x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\\ c,Đề.sai\\ d,Sửa:\left(x-2\right)^2-16\left(5-2x\right)^2=0\\ \Rightarrow\left[x-2-4\left(5-2x\right)\right]\left[x-2+4\left(5-2x\right)\right]=0\\ \Rightarrow\left(x-2-20+8x\right)\left(x-2+20-8x\right)=0\\ \Rightarrow\left(9x-22\right)\left(18-7x\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{22}{9}\\x=\dfrac{18}{7}\end{matrix}\right.\)

\(\dfrac{x^2+4}{4}\ge x\)

\(\Leftrightarrow\dfrac{4\left(x^2+4\right)}{4}\ge4x\)

\(\Leftrightarrow x^2+4\ge4x\)

\(\Leftrightarrow x^2-4x+4\ge0\)

\(\Leftrightarrow\left(x-2\right)^2\ge0\) (Luôn đúng)

Vậy đẳng thức ban đầu được chứng minh.

\(\dfrac{x^2+4}{4}\ge x\)

\(\Leftrightarrow\dfrac{x^2+4}{4}\ge\dfrac{4x}{4}\)

\(\Leftrightarrow x^2+4+4x\ge0\)
\(\Leftrightarrow\left(x+2\right)^2\ge0\)    (luôn đúng)

 

     4-2(x+1)=-x

<=>4-2x-2=-x

<=>-2x+x=-4+2

<=>-x      =-2

<=>x=2

4-2(x+1)=-x 

4 - 2x + 2 = -x

-2x + x = -2 -4

-x = -6

x = 6

hok tốt!