cho đường thẳng x,y và 2 điểm a,b thuộc cùng một nửa mặt phẳng bờ x,y( a,b ko thuộc x,y). qua a vẽ một đường thẳng vuông góc với x,y tại h. lấy điểm c sao cho ha= hc. đoạn bc cắt xy tại m.cmr
a, mh là tia phân giác của góc amc
b, góc amx = góc bmy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là giao điểm của AX và BY.
Ta có: ^XAY = ^YBX = 900 => Tứ giác ABXY nội tiếp đường tròn đường kính XY => ^BAX = ^BYX
Mà ^BYX = ^BHX nên ^BAX = ^BHX => \(\Delta\)XHB ~ \(\Delta\)XBA (g.g) => XB2 = XH.XA
Hay XZ2 = XH.XA => \(\Delta\)XHZ ~ \(\Delta\)XZA (c.g.c) => ^XZH = ^XAZ => ^XEZ = ^XAZ
=> Tứ giác AEXZ nội tiếp => ^AXE = ^AZE = 1800 - ^XZE - ^YZA = 1800 - ^XAZ - ^YAZ = 1800 - ^XAY = 900
=> ^AXE = ^XAY (=900) => XE // YA. Tương tự: XB // YF => ^BXE = ^FYA
Mà 2 tam giác BXE và FYA cân tại các đỉnh X và Y nên \(\Delta\)BXE ~ \(\Delta\)FYA (g.g)
=> \(\frac{BE}{FA}=\frac{XE}{YA}=\frac{XB}{YA}=\frac{IB}{IA}\)(Do \(\Delta\)BIX ~ \(\Delta\)AIY).
Đồng thời: BE,FA là cặp cạnh tương ứng của \(\Delta\)BXE ~ \(\Delta\)FYA . Mà XE // YA, XB // YF nên BE // FA
Áp dụng hệ quả ĐL Thales: \(\frac{BE}{FA}=\frac{TB}{TA}\). Từ đó: \(\frac{IB}{IA}=\frac{TB}{TA}\)=> IT là phân giác ^AIB (1)
Mặt khác: \(\frac{IX}{IY}=\frac{BX}{AY}=\frac{BZ}{AZ}\)=> BZ là phân giác ^XIY (2)
Từ (1) và (2), kết hợp với ^AIB, ^XIY đối đỉnh => Z,I,T thẳng hàng => ZT đi qua I
Do đó: 3 đường thẳng XA,YB,ZT đồng quy (đpcm).