Tìm n \(\in\)Z sao cho \(\frac{n-3}{n^2+n}\)\(\in\)Z.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = n/3 + n2/2 + n3/6
A = 2n+3n2+n3/6
A = 2n+2n2+n2+n3/6
A = (n+1)(2n+n2)/6
A = n(n+1)(n+2)/6
Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6
Hay A thuộc Z (đpcm)
b) B = n4/24 + n3/4 + 11n2/24 + n/4
B = n4+6n3+11n2+6n/24
B = n(n3+6n2+11n+6)/24
B = n(n3+n2+5n2+5n+6n+6)/24
B = n(n+1)(n2+5n+6)/24
B = n(n+1)(n2+2n+3n+6)/24
B = n(n+1)(n+2)(n+3)/24
Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3
Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24
Hay B nguyên (đpcm)
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
\(ĐểA\in Z\)thì:
\(n+2⋮n-5\)
=> \(\left[n-5\right]+7⋮n-5\)
=> 7 chia hết cho n - 5
=> n -5 E Ư[7] E {-7;-1;1;7}
=> n E {-2;4;6;12}
Vậy: n = -2; n = 4 n = 6; n = 12
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để \(A\in Z\)thì n-5 là ước nguyên của 7
\(n-5=1\Rightarrow n=6\)
\(n-5=7\Rightarrow n=12\)
\(n-5=-1\Rightarrow n=4\)
\(n-5=-7\Rightarrow n=-2\)
Ai thấy đúng k cho mink nha !!!
Để A \(\in\)Z \(\Rightarrow\)\(\frac{n^2-7}{n-3}\)\(\in\)Z
\(\Rightarrow\)n2 - 7 \(⋮\)n - 3
\(\Rightarrow\)n.( n - 3) + 3n - 7 \(⋮\)n - 3 ( vì n.(n -3) \(⋮\)n - 3 )
\(\Rightarrow\)3n - 7 \(⋮\)n - 3
\(\Rightarrow\) (3n -9) + 2 \(⋮\)n - 3
\(\Rightarrow\)2 \(⋮\)n - 3
\(\Rightarrow\)n - 3 \(\in\)Ư(2) = { -2; -1; 1; 2}
\(\Rightarrow\)n \(\in\){ 1; 2; 4; 5}
Thử lại các giá trị trên, ta có: n \(\in\){1; 2; 4; 5} thỏa mãn.
Vậy: n \(\in\){1; 2; 4; 5}
- Đúng thì k cho mình nhé !!
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có:
\(A=\frac{n+2}{n+5}=\frac{n+5-3}{n+5}=1-\frac{3}{n+5}\)
Để \(A\in Z\)thì \(\frac{3}{n+5}\in Z\)
\(\Leftrightarrow3⋮\left(n+5\right)\)
\(\Rightarrow n+5\inư\left(3\right)\)
\(\Rightarrow n+5\in\left\{1;-1;3;-3\right\}\)
Lập bảng :
n+5 | 1 | -1 | 3 | -3 |
n | -4 | -6 | -2 | -8 |
Vậy \(x\in\left\{-4;-6;-2;-8\right\}\)