Tìm một số tự nhiên có 2 chữ số biết rằng khi chia số đó cho 5 thì dư 2 còn chia cho 6 thì dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bài giải:
Gọi số cần tìm là aa
aa chia hết cho 2
=> a có tận cùng là 0;2;4;6;8 (1)
Mà a chia 5 dư 2 => a = 2 hoặc 7 (2)
Từ (1) và (2) => a = 2
=> aa = 22.
b) Tương tự bn nhé!
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
a) vì \(aa⋮2\) và \(aa:5\)dư 3
Nên aa sẽ có tận cùng là 3 hoặc 8
tự tìm aa đê lưu ý số tận cùng là 3 hoặc 8 và aa là số có 2 chữ số
b) Vì bb chia hết cho 2 và bb chia 5 dư 1
Nên bb có cs tận cùng là 1 hoặc 6
Làm tương tự
Gọi số có hai chữ số giống nhau là aa ( kđ : 0 < a < 9 ; a = a )
Ta thấy : aa chia 5 dư 2 thì a thuộc { 2 ; 8 }
Nhưng aa lại chia hết cho 2 => trong tập hợp trên thì a sẽ là 8 để aa chia hết cho 2. Vì a và a giống nhau trong khi a = 8 nên aa = 88
Vậy số có hai chữ số giống nhau là 88
Ta có : Số chia hết cho 2 gồm những số có chữ số tận cùng như : 0 ; 2 ; 4 ; 6 ; 8 .
Ta lại có các số chia hết cho 2 và 5 thì chữ số tận cùng là 0 . Nhưng để chia hết cho 2 còn chia 5 dư 2 thì số đó phải có chữ số tận cùng là 2 . Do đề cho là 2 chữ số giống nhau nên ta sẽ có số cần tìm là 22 .
Thử lại : 22 : 2 = 11 ( chia hết )
22 : 5 = 4 ( dư 2 ) ( chia có dư )
Đ/S : 22
Gọi số cần tìm là x (x \(\in\)N ; 9 < x < 100)
Ta có :
x = 7k + 5 = 11m + 9
\(\Rightarrow\)x + 2 \(⋮\)7 ; x + 2 \(⋮\)11
\(\Leftrightarrow\)x + 2 \(\in\)BC (7,11)
Mà ƯCLN (7,11) = 1 \(\Rightarrow\)BCNN (7,11) = 7 . 11 = 77
\(\Rightarrow\)BC(7,11) \(\in\) B(77) = {0 ; 77 ; 154 ; ....}
Mà 9 < x < 100
\(\Rightarrow\)x = 77
Vậy số cần tìm là 77
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
Lời giải:
Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng
$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên
$n=60k+2$
$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$
$\Leftrightarrow 60k-1\vdots 7$
$\Leftrightarrow 63k-(60k-1)\vdots 7$
$\Leftrightarrow 3k+1\vdots 7$
$\Leftrightarrow 3k-6\vdots 7$
$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.
Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$
Vì $t\geq 0$ nên $n\geq 122$
Vậy số tự nhiên nhỏ nhất thỏa đề là $122$