K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2020

Có thể giải gúp tôi được không / 

Con mua 17 kg cam , mẹ mua gấp 3 lần số cam của con . Hỏi cả hai mẹ con mua được bao nhiêu kg cam ? 

20 tháng 4 2016

a> bạn dễ lm đc nha

20 tháng 4 2016

b> nối OA,OB

tứ giác OEAI nội tiếp => góc OIE=OAE=90

=> OI là đg cao của tam giác OED

mà tam giác ODE cân => đpcm

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
20 tháng 1 2016

oài 3 bài này khó kinh khủng 

24 tháng 5 2023

loading... 

Do (O) là đường tròn ngoại tiếp ∆ABC

⇒ O là giao điểm của ba đường trung trực của ∆ABC

⇒ AO là đường trung trực của ∆ABC

⇒ AO ⊥ BC tại H

⇒ H là trung điểm BC

⇒ BH = BC : 2 = 12 : 2 = 6 (cm)

Do ∠ABD là góc nội tiếp chắn nửa đường tròn

⇒ ∠ABD = 90⁰

∆ABD vuông tại B có BH là đường cao

⇒ 1/BH² = 1/AB² + 1/BD²

⇒ 1/BD² = 1/BH² - 1/AB²

= 1/36 - 1/100

= 4/225

⇒ BD² = 225/4

⇒ BD = 15/2 = 7,5 (cm)

∆ABD vuông tại B

⇒ AD² = AB² + BD² (Pytago)

= 10² + 7,5²

= 156,25

⇒ AD = 12,5 (cm)

24 tháng 5 2023

Để tính độ dài đoạn thẳng AD, ta cần tìm được tọa độ của điểm D trên đường tròn (O).

Gọi M là trung điểm của đoạn BC. Ta có AM là đường trung trực của BC, do đó OM vuông góc với BC và OM = MC = 6(cm).

Vì tam giác ABC cân tại A nên đường trung trực của BC cũng là đường cao của tam giác. Do đó, ta có AH là đường cao của tam giác ABC và AH = $\sqrt{AB^2 - BM^2}$ = $\sqrt{100 - 36}$ = $\sqrt{64}$ = 8(cm).

Ta có thể tính được AO bằng định lý Pythagoras trong tam giác vuông AOM:

$AO^2 = AM^2 + OM^2 = 10^2 - 6^2 + 6^2 = 100$

Vậy $AO = 10$ (cm).

Do đó, ta có thể tính được bán kính đường tròn (O) là $R = \frac{BC}{2} = 6$ (cm).

Gọi E là điểm đối xứng của A qua đường tròn (O). Ta có AE là đường đối xứng của AH qua đường tròn (O), do đó AE = AH = 8 (cm).

Ta có thể tính được độ dài đoạn thẳng DE bằng định lý Pythagoras trong tam giác vuông AOD:

$DE^2 = DO^2 + OE^2 = R^2 + AE^2 = 6^2 + 8^2 = 100$

Vậy $DE = 10$ (cm).

Ta cần tính độ dài đoạn thẳng AD. Ta có thể tính được độ dài đoạn thẳng HD bằng định lý Euclid:

$\frac{HD}{BD} = \frac{AH}{AB}$

$\Rightarrow HD = \frac{AH \cdot BD}{AB} = \frac{8 \cdot 6}{10} = \frac{24}{5}$ (cm)

Ta có thể tính được độ dài đoạn thẳng AO bằng định lý Pythagoras trong tam giác vuông AHO:

$AD^2 = AO^2 + OD^2 - 2 \cdot AO \cdot OD \cdot \cos{\angle AOD}$

Vì tam giác AOD cân tại O nên $\angle AOD = \frac{1}{2} \cdot \angle AOB$. Ta có thể tính được $\angle AOB$ bằng định lý cosin trong tam giác ABC:

$\cos{\angle AOB} = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC

BÀI 1:Cho ABC cân tại A , Kẻ\(AH⊥BC\left(H\in BC\right)\) ,biết AB =25cm , BC = 30cm.a) TừH kẻ\(HI⊥AB\left(I\in AB\right)\) và kẻ \(ID⊥AH\left(D\in AH\right)\)Chứng minh rằng: IA.IB = AH.DHb) Tính AIBÀI 2 Cho tam giác ABC (AB>AC ; góc BAC >90o) I;Ktheo thứ tự là trung điểm của AB , AC.Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai D;tia BA cắt đường tròn (K) tại điểm thứ hai E ,tia CA cắt đường tròn...
Đọc tiếp

BÀI 1:Cho ABC cân tại A , Kẻ\(AH⊥BC\left(H\in BC\right)\) ,biết AB =25cm , BC = 30cm.

a) TừH kẻ\(HI⊥AB\left(I\in AB\right)\) và kẻ \(ID⊥AH\left(D\in AH\right)\)

Chứng minh rằng: IA.IB = AH.DH

b) Tính AI

BÀI 2 Cho tam giác ABC (AB>AC ; góc BAC >90o) I;Ktheo thứ tự là trung điểm của AB , AC.Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai D;tia BA cắt đường tròn (K) tại điểm thứ hai E ,tia CA cắt đường tròn (I) tại điểm thứ hai F.

a)CMR:3 điểm B;C;D thẳng hàng

b)CMR: Tứ giác BFEC nội tiếp 

c)CM:3 đường thẳng AD,BF,CE đồng quy?

BÀI 3 Cho tam giác ABC nhọn nội tiếp đường tròn (O), BD và CE là hai đường cao của tam giác , chúng cắt nhau tại H và cắt đường tròn (O) lần lượt ở D' và E'.Chứng minh :

a)Tứ giác BEDC nội tiêp 

b)DE song song D'E'

c)Cho BD cố định.Chứng minh rằng khi A di động trên cung lớn AB sao cho tam giác ABC là tam giác nhọn thì bán kính đường tròn ngoại tiếp tam giác ADE không đổi

0
16 tháng 9 2019

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Gọi (O’) là đường tròn đi qua D và tiếp xúc với AB tại B.

Đường tròn (O’) cắt CB tại F khác B. Chứng minh E F   / /   A B .

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Hai góc ở vị trí đồng vị  ⇒   E F / / A B