cho tam giác ABC có 3 đường cao AD,BE,CF cắt nhau tại H(AB<AC).CMR:
a)HA.HD=HB.HE=HC.HF
b)AF.AB=AH.AD=AE.AC
c)BH.BE+CH.CF=BC^2
d)tg FHE~tg BHC
e)tg AFE~tg ACB
g)DA là phân giác ^EDF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)
Do đó: tg HDB đồng dạng tg DCA (g.g)
Suy ra: HD/DC=BD/DA-> bd*dc=dh*da
b, HD/HA=SBHC/SABC
HE/BE=SAHC/SABC
HF/CF=SHAB/SABC
HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
a) \(\widehat{CBH}=\widehat{DAC}\) (cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBC}=\widehat{KAC}\) (cùng chắn cung KC)
Suy ra \(\widehat{KBC}=\widehat{CBH}\).
Xét tam giác BHK có \(\widehat{BCK}=\widehat{BCH},BD\perp HK\)
Vậy tam giác BHK cân tại B và BC là trung trực của HK.
b) Vì AM là đường kính nên \(\widehat{ACM}=90^o\).
\(\widehat{ABC}=\widehat{AMC}\) (cùng chắn cung AC)
Xét hai tam giác ABD và AMC có:
\(\left\{{}\begin{matrix}\widehat{D}=\widehat{C}=90^o\\\widehat{ABD}=\widehat{AMC}\end{matrix}\right.\) Vậy tam giác ABD đồng dạng với tam giác AMC (g.g).
Ta có từ giác BFEC nội tiếp ( vì có góc BFC = BEC = 90 độ).
Suy ra góc ABC = AEF => góc AEF = góc AMC.
Mà \(\widehat{AMC}+\widehat{CAM}=90^o\Rightarrow\widehat{AEF}+\widehat{CAM}=90^o\\ \Rightarrow AO\perp EF.\)
d) Xét hai tam giác AEQ và AMC đồng dạng ta sẽ có được AQ.AM = AE.AC.
Sửa đề: M đối xứng H qua BC
Gọi AD là đường kính, I là giao của HD và BC
góc ABD=1/2*sđ cung AD=90 độ
=>BD//CH
góc ACD=1/2*sđ cung AD=90 độ
=>CD//BH
mà BD//CH
nên BHCD là hình bình hành
=>BC căt HD tại trung điểm của mỗi đường
=>I là trung điểm chung của HD và BC và BH//CD
góc AMD=1/2*sđ cung AD=90 độ
=>MD vuông góc AM
=>MD//BC
=>BCDM là hình thang cân
=>góc MBC=góc DCB=góc HBC
=>BC là phân giác của góc HBM
mà BC là trung tuyến của ΔHBM
nên ΔHMB cân tại B
=>BC là trug trực của MH
=>M đối xứng H qua BC