Tìm tất cả giá trị của tham số để BPT \(mx^2+mx-m+2\le0\) vô nghiệm
giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+10x+16\le0\Rightarrow-8\le x\le-2\)
Xét BPT: \(mx\ge3m+1\Leftrightarrow m\left(x-3\right)\ge1\) trên \(\left[-8;-2\right]\)
Do \(-8\le x\le-2\Rightarrow x-3< 0\)
Do đó BPT tương đương:
\(m\le\dfrac{1}{x-3}\) (1)
(1) vô nghiệm khi và chỉ khi \(m>\max\limits_{\left[-8;-2\right]}\dfrac{1}{x-3}\)
\(\Rightarrow m>-\dfrac{1}{5}\)
\(x^2-x+m\le0\)
\(\Leftrightarrow m\le f\left(x\right)=-x^2+x\)
Bảng biến thiên:
Yêu cầu bài toán thỏa mãn khi \(m>maxf\left(x\right)=f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
Bất phương trình ( m 2 - m ) x < m vô nghiệm khi và chỉ khi m 2 - m = 0 m ≤ 0 ⇔ [ m = 0 m = 1 ⇔ m = 0 m ≤ 0
Lời giải:
Yêu cầu bài toán tương đương với việc tìm $m$ để $mx^2+mx-m+2>0$ với mọi $x$
Điều này xảy ra khi:\(\left\{\begin{matrix} m>0\\ \Delta=m^2-4m(2-m)< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> 0\\ m-4(2-m)< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>0\\ m< \frac{8}{5}\end{matrix}\right.\)
(theo định lý về dấu của tam thức bậc 2)