K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 5 2020

Lời giải:

Yêu cầu bài toán tương đương với việc tìm $m$ để $mx^2+mx-m+2>0$ với mọi $x$

Điều này xảy ra khi:\(\left\{\begin{matrix} m>0\\ \Delta=m^2-4m(2-m)< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> 0\\ m-4(2-m)< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>0\\ m< \frac{8}{5}\end{matrix}\right.\)

(theo định lý về dấu của tam thức bậc 2)

NV
5 tháng 5 2021

\(x^2+10x+16\le0\Rightarrow-8\le x\le-2\)

Xét BPT: \(mx\ge3m+1\Leftrightarrow m\left(x-3\right)\ge1\) trên \(\left[-8;-2\right]\)

Do \(-8\le x\le-2\Rightarrow x-3< 0\)

Do đó BPT tương đương:

\(m\le\dfrac{1}{x-3}\) (1)

(1) vô nghiệm khi và chỉ khi \(m>\max\limits_{\left[-8;-2\right]}\dfrac{1}{x-3}\)

\(\Rightarrow m>-\dfrac{1}{5}\)

21 tháng 2 2021

\(x^2-x+m\le0\)

\(\Leftrightarrow m\le f\left(x\right)=-x^2+x\)

Bảng biến thiên:

Yêu cầu bài toán thỏa mãn khi \(m>maxf\left(x\right)=f\left(\dfrac{1}{2}\right)=\dfrac{1}{4}\)

21 tháng 2 2021

đáp án :m>1/4

12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

NV
22 tháng 6 2021

1.

\(y'=m-3cos3x\)

Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)

\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)

\(\Leftrightarrow m\ge3\)

NV
22 tháng 6 2021

2.

\(y'=1-m.sinx\)

Hàm đồng biến trên R khi và chỉ khi:

\(1-m.sinx\ge0\) ; \(\forall x\)

\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)

- Với \(m=0\) thỏa mãn

- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)

\(\Rightarrow m\ge-1\)

- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)

\(\Rightarrow m\le1\)

Kết hợp lại ta được: \(-1\le m\le1\)

2 tháng 3 2017

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

2 tháng 12 2019

Bất phương trình ( m 2 - m ) x < m  vô nghiệm khi và chỉ khi  m 2 - m = 0 m ≤ 0 ⇔ [ m = 0 m = 1 ⇔ m = 0 m ≤ 0

20 tháng 3 2017