K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)

                    \(=9-m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

\(\Rightarrow 9-m>0\)

\(\Leftrightarrow m<9\)

Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt

b)Theo định lí Vi-ét ta có:

\(x_1.x_2=\frac{-m}{1}=-m(1)\)

\(x_1+x_2=\frac{-6}{1}=-6\)

Lại có \(x_1=2x_2\)

\(\Rightarrow3x_2=-6\)

\(\Leftrightarrow x_2=-2\)

\(\Rightarrow x_1=-4\)

Thay x1;x2 vào (1) ta được 

\(8=m\)

Vậy m-8 thì x1=2x2

 

 

24 tháng 4 2021

Ở trên có đoạn mình đánh lộn  \(\Delta'\) ra \(\Delta\) nhé

22 tháng 4 2018

Vẽ đồ thị hàm số y = x 3 + 3 x 2 – 9 x + 2  (C)

Giữ phần đồ thị (C) phía trên trục Ox, lấy đối xứng phần đồ thị (C) dưới trục Ox qua trục Ox.

Bỏ phần đồ thị dưới trục Ox ta được đồ thị y = x 3 + 3 x 2 – 9 x + 2 .

Dựa vào đồ thị ta có đáp án A.

25 tháng 5 2016

Bảo Ngọc tính nghiệm bị sai!

25 tháng 5 2016

a) Ta xét : 

\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)

Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.

b) Dễ thấy : x1<x2 nên ta có : 

\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)

\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)

\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)

\(\Leftrightarrow m=2\)

Vậy m = 2

a) Thay m = -4 vào phương trình, ta có:

\(x^2+5x-6=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=1\end{matrix}\right.\)

KL: Vậy phương trình có tập nghiệm \(S=\left\{-6;1\right\}\) khi m = -4

b) Xét \(\Delta=5^2-4.1.\left(m-2\right)=25-4m+8=33-4m\)

Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow33-4m>0\Leftrightarrow m< \dfrac{33}{4}\)

Theo định lý Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1.x_2=m-2\end{matrix}\right.\)

Để \(x_1^2+x^2_2-2x_1=25+2x_2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)-25=0\)

<=> \(\left(-5\right)^2-2\left(m-2\right)-2\left(-5\right)-25=0\)

<=> \(25-2m+4+10-25=0\)

<=> 2m = 14

<=> m = 7 (Tm)

Vậy m = 7 để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x^2_2-2x_1=25+2x_2\)

7 tháng 2 2022

\(\Delta=25-4\left(m-2\right)=25-4m+8=33-4m\)

Để pt có 2 nghiệm pb khi m =< 33/4 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=\dfrac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=2\)

Thay vào ta được : \(\dfrac{-7}{m-2+5+1}=2\Leftrightarrow\dfrac{-7}{m+4}=2\Rightarrow-7=2m+8\Leftrightarrow m=-\dfrac{15}{2}\)(tm) 

\(Pt:x^2+5x+m-2=0.có.2.nghiệm.phân.biệt\\ x_1,x_2\ne1\\ \Leftrightarrow\left\{{}\begin{matrix}\Delta=5^2-4\left(m-2\right)=33-4m>0\\1^2+5.1+m-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\m\ne-4\end{matrix}\right.\) 

Theo định lí Vi ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\\ Từ.giả.thiết:\\ \dfrac{ 1}{x_1-1}+\dfrac{1}{x_2-1}=2\\ \Rightarrow x_2-1+x_1-1=2\left(x_1-1\right)\left(x_2-1\right)\\ \Leftrightarrow\left(x_1+x_2\right)-2=2\left[x_1x_2-\left(x_1+x_2\right)+1\right]\\ \Leftrightarrow-5-2=2\left(m-2+5+1\right)\Leftrightarrow-7=2\left(m+4\right)\\ \Rightarrow m=\dfrac{-15}{2}\)