cho tam giác MNO có OM=6 cm ON=8 cm MN=9 cm. Đường phân giác góc MNO cắt MN tại I. Gọi E là trung điểm mn qua E kẻ tia Ex//OI cắt ON tại H
a) CM EM.ON=IN.HN
b) Tính cạnh NI, IM
c) CM HN=MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)
=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>EI=8(cm)
b: Ta có: EI+IF=EF
=>EF=6+8=14(cm)
Xét ΔEDF có MI//DF
nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)
=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)
=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)
MD+ME=DE
=>MD+30/7=10
=>MD=40/7(cm)
c: Xét ΔDEF có DI là phân giác
nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)
Xét ΔEDF có MI//DF
nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)
a: Xét ΔCAN vuông tại A và ΔCMN vuông tại M có
CN chung
CA=CM
=>ΔCAN=ΔCMN
=>góc ACN=góc MCN
=>CN là phân giác của góc ACM
b: AN=NM
NM<NB
=>AN<NB
c: Xét ΔCME vuông tại M và ΔCAB vuông tại A có
CM=CA
góc C chung
=>ΔCME=ΔCAB
=>CE=CB
=>ΔCEB cân tại C
mà CN là phân giác
nên CN vuông góc EB
xem lại đề