Tìm x,y,z nguyên biết4x2-8y3+2z2+4x-4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)< 1\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2< 1\)
Nếu tồn tại 1 trong 3 số \(x-y;y-z;z-1\) khác 0
Do x; y; z nguyên
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge1\) (vô lý)
\(\Rightarrow x-y=y-z=z-1=0\)
\(\Leftrightarrow x=y=z=1\)
Đặt x+y−z=a;x−y+z=b;−x+y+z=cx+y−z=a;x−y+z=b;−x+y+z=c thì a + b + c = x + y + z
A=(a+b+c)3−a3−b3−c3A=(a+b+c)3−a3−b3−c3
=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)
=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]
=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)
=(b+c)(3a(a+b)+3c(a+b))=3(a+b)(b+c)(c+a)
Lời giải:
a. Áp dụng TCDTSBN:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)
$\Rightarrow x=-3.2=-6; y=-3.5=-15$
b. Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$
$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$
$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$
$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$
c.
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$
$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$
$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$
Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737
x2+y2+z2-yz-4x-3y+7=0
<=> x2 - 4x + 4 +\(\frac{y^2}{4}\)- 2\(\frac{y}{2}\)z + z2 + \(\frac{3}{4}\)y2 - 3y+ 3 = 0
<=> (x - 2)2 + (\(\frac{y}{2}\)- z)2 + 3(\(\frac{y}{2}\)- 1)2 =0
Vậy x,y,z luôn nguyên
sai chỗ nào mong các bạn chỉnh sửa giúp mình ạk!!!!! ^.,..* O.o
a: \(=3x+y-z-4x+2y-6z=-x+3y-7z\)
b: \(=x^3+6x^2+5y^3-2x^3+5x-7y^3=-x^3+6x^2+5x-2y^3\)
c: \(=5.7x^2y-3.1xy+8y^3-6.9xy+2.3x^2y+8y^3\)
\(=8x^2y-10xy+16y^3\)