Cho phương trình (2m - 1)×x+2=m ( m là tham số ) (1)
a, tìm điều kiện của m để phương trình (1) là phương trình bậc nhất .
b, Tìm giá trị của m để phương trình (1) tương đương với phương trình : 2×(x-1)= -4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để đây là phương trình bậc nhất một ẩn thì m-2<>0
hay m<>2
b: Ta có: 7-4x=2x-5
=>-6x=-12
hay x=2
Thay x=2 vào (1), ta được:
2(m-2)+3=5
=>2m-4=2
=>2m=6
hay m=3(nhận)
a.
(1) là pt bậc nhất 1 ẩn khi và chỉ khi \(2\left(m-1\right)\ne0\Leftrightarrow m\ne1\)
b.
Ta có: \(2x+5=3\left(x+2\right)-1\)
\(\Leftrightarrow2x+5=3x+5\)
\(\Leftrightarrow x=0\)
Do đó (1) tương đương (*) khi (1) nhận \(x=0\) là nghiệm
\(\Rightarrow2\left(m-1\right).0+3=2m-5\)
\(\Rightarrow m=4\)
a, Để phương trình (1) là phương trình bậc nhất một ẩn thì \(m-1\ne0\Leftrightarrow m\ne1\)
\(b,2x+5=3\left(x+2\right)-1\\ \Leftrightarrow2x+5=3x+6-1\\ \Leftrightarrow2x+5=3x+5\\ \Leftrightarrow x=0\)
b,Để pt trên là pt tương đương thì pt(1) có nghiệm x=0, thay x=0 vào pt(1) ta có:
\(2\left(m-1\right)x+3=2m-5\\ \Leftrightarrow2\left(m-1\right).3+3=2m-5\\ \Leftrightarrow2m-5=3\\ \Leftrightarrow2m=8\\ \Leftrightarrow m=4\)
a: Để (1) là phươg trình bậc nhất 1 ẩn thì (m-1)<>0
hay m<>1
b: Ta có: 2x+5=3(x+2)-1
=>2x+5=3x+6-1
=>3x+5=2x+5
=>x=0
Thay x=0 vào (1), ta được:
2m-5=3
hay m=4
a, Để pt trên là pt bậc nhất 1 ẩn thì: \(m-1\ne0\Leftrightarrow m\ne1\)
\(b,2x+5=3\left(x+2\right)-1\\ \Leftrightarrow2x+5=3x+6-1\\ \Leftrightarrow2x+5=3x+5\\ \Leftrightarrow x=0\)
Để pt (1) tương đương vs pt trên thì
\(2\left(m-1\right).0+3=2m-5\\ \Leftrightarrow2m-5=3\\ \Leftrightarrow2m=8\\ \Leftrightarrow m=4\)
a, để pt trên là pt bậc nhất khi m khác 2
b, Ta có \(2x+5=x+7-1\Leftrightarrow x=1\)
Thay x = 1 vào pt (1) ta được
\(2\left(m-2\right)+3=m-5\Leftrightarrow2m-1=m-5\Leftrightarrow m=-4\)
a Để phương trình (1) là pt bậc nhất 1 ẩn thì m-2<>0
=>m<>2
b: 3x+7=2(x-1)+8
=>3x+7=2x-2+8=2x+6
=>x=-1
Thay x=-1 vào (1), ta được:
2(m-2)*(-1)+3=3m-13
=>-2m+2+3=3m-13
=>-5m=-13-2-3=-15-3=-18
=>m=18/5
1,
a, 2(m-2)x+3=m-5
<=> 2(m-2)x+3-m+5=0
<=> 2(m-3)x-m+8=0
PT (1) là PT bậc nhất 1 ẩn thì m-2\(\ne\)0
\(\Leftrightarrow m\ne2\)
b) có 2x+5=(x+7)-1
<=> 2x+5=x+7-1
<=> 2x+5=x+6
<=> x-1=0
<=> x=1
Để PT (1) tương đương với pt x-1=0 thì \(\hept{\begin{cases}2\left(m-2\right)=1\\-m+8=-1\end{cases}\Leftrightarrow\hept{\begin{cases}m-2=\frac{1}{2}\\-m=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=\frac{5}{2}\\m=9\end{cases}}}\)(Vô lí)
Vậy không có m thỏa mãn điều kiện
a) Ta có:
2(m – 2) x + 3 = m – 5
<=> 2(m - 2)x + 8 - m = 0
Để phương trình là phuong trình bậc nhất một ẩn thì
a \(\ne\)0
<=> 2(m - 1) khác 0
<=> m - 1 \(\ne\)0
<=> m \(\ne\)1
a, Ta có:
(2m-1)x +2 =m
(=) (2m-1)x+2-m =0 (2)
Với m=1/2 ta có phương trình (2) có dạng 0x= -3/2 nên vô nghiệm
với m khác 1/2 ta có phương trình (2) là phương trình bậc nhất 1 ẩn.
Vậy điều kiện để phương trình (1) là phương trình bậc nhất là m khác 1/2
b, Ta có
2(x-1)=-4
(=) 2x -2 +4 =0
(=)2x +2 =0(3)
Ta có phương trình (3) là phương trình bậc nhất một ẩn nên có nghiệm duy nhất
x = -2/2 =-1
Với m khác 1/2 ta có phương trình (2) là phương trình bậc nhất 1 ẩn nên có nghiệm duy nhất
x=(m-2)/(2m-1)
Vậy phương trình (1) tương đương với phương trình (3)
(=) (m-2)/(2m-1) = -1
(=) 2-m =2m-1
(=) 3m=3
(=) m =1(tmđk)
Vậy hai phương trình (1) tương đương với nhau (=) m=1
Chúc bạn học tốt.