K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Gọi 3 đường cao là a,b,c. Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và c - a = 9cm

Áp dụng dãy tỉ số bằng nhau: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{c-a}{4-2}=\frac{9}{2}\)

 =>\(a=\frac{9}{2}\cdot2=9\left(cm\right)\)

\(b=\frac{9}{2}\cdot3=\frac{27}{2}\left(cm\right)\)

\(c=\frac{9}{2}\cdot4=18\left(cm\right)\)

Vậy chu vi tam giác là: \(9+\frac{27}{2}+18=\frac{18}{2}+\frac{27}{2}+\frac{36}{2}=\frac{81}{2}\left(cm\right)\)

24 tháng 5 2018

gọi độ dài 3 cạnh của tam giác là a,b,c, 3 chiều cao tương ứng là x,y,z, diện tích của tam giác là S

Ta có : \(a=\frac{2S}{x}\)\(b=\frac{2S}{y}\)\(c=\frac{2S}{z}\)

Từ đó : 

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(\Rightarrow\frac{2S}{2x}=\frac{2S}{3y}=\frac{2S}{4z}\)\(\Rightarrow2x=3y=4z\)\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Vậy 3 chiều cao tương ứng tỉ lệ với 6,4,3

8 tháng 10 2015

Gọi 3 cạnh của tam giác là a; b; c và  3 đường cao tương ứng của tam giác lần lượt là: ha; hb; hc

=> a.ha = b.h= c.hc (cùng bằng 2 lần diện tích tam giác)

Theo bài cho ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và \(h_a+h_b+h_c=26\)

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) => a = 2k ; b = 3k; c = 4k 

a.ha = b.h= c.hc => 2k.h= 3k.h= 4k.hc => 2.ha = 3.h= 4.hc => \(\frac{2.h_a}{24}=\frac{3.h_b}{24}=\frac{4.h_c}{24}\) => \(\frac{h_a}{12}=\frac{h_b}{8}=\frac{h_c}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{h_a}{12}=\frac{h_b}{8}=\frac{h_c}{6}=\frac{h_a+h_b+h_c}{12+8+6}=\frac{26}{26}=1\)

=> \(h_a=12;h_b=8;h_c=6\)

Vậy..................

Bài 3: 

Gọi độ dài hai cạnh góc vuông lần lượt là a,b

Theo đề, ta có: a/8=b/15

Đặt a/8=b/15=k

=>a=8k; b=15k

Ta có: \(a^2+b^2=51^2\)

\(\Leftrightarrow289k^2=2601\)

=>k=3

=>a=24; b=45

Bài 6: 

Xét ΔABC có \(10^2=8^2+6^2\)

nên ΔABC vuông tại A

22 tháng 1 2022

Refer:

2, 

Ta có:AH là đường cao ΔABC

⇒AH ⊥ BC tại H

⇒∠AHB=∠AHC=90°

⇒ΔAHB và ΔAHC là Δvuông H

Xét ΔAHB vuông H có:

     AH² + HB²=AB²(Py)

⇔24² + HB²=25²

⇔         HB²=25² - 24²

⇔         HB²=49

⇒         HB=7(đvđd)

Chứng minh tương tự:HC=10(đvđd)

Ta có:BC=BH + CH=7 + 10=17(đvđd)

Gọi độ dài ba đường cao lần lượt là a,b,c

Độ dài 3 cạnh tỉ lệ với 2;3;4

=>2a=3b=4c

=>a/6=b/4=c/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{6+4+3}=\dfrac{13}{13}=1\)

=>a=6; b=4; c=3