cmr:
1/4.1+1/4.2+1/4.3+...+1/7.9+1/8.0>7/12
3,1+1/2+1/3+1/4+...+1/62+1/63>6
giúp mk nhé đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4k}{4k^4+1}=\frac{4k}{4k^4+4k^2+1-4k^2}=\frac{4k}{\left(2k^2+1\right)^2-\left(2k\right)^2}=\frac{4k}{\left(2k^2+2k+1\right)\left(2k^2-2k+1\right)}=\frac{1}{2k^2-2k+1}-\frac{1}{2k^2+2k+1}\)
\(=\frac{1}{2k\left(k-1\right)+1}-\frac{1}{2k\left(k+1\right)+1}\)
\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+...+\frac{1}{2k\left(k-1\right)+1}-\frac{1}{2k\left(k+1\right)+1}\)
\(=1-\frac{1}{2k\left(k+1\right)+1}=...\)
Ta có: \(4n^4+1=\left(4n^4+4n^2+1\right)-4n^2=\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)\)
\(\frac{4n}{4n^4+1}=\frac{\left(2n^2+2n+1\right)-\left(2n^2-2n+1\right)}{\left(2n^2-2n+1\right)\left(2n^2+2n+1\right)}=\frac{1}{2n^2-2n+1}-\frac{1}{2n^2+2n+1}\)
Thay vào ta có:
\(\frac{4.1}{4.1^4+1}+\frac{4.2}{4.2^2+1}+...+\frac{4n}{4n^4+1}=\frac{220}{221}\)
\(\Leftrightarrow1-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+...+\frac{1}{2n^2-2n+1}-\frac{1}{2n^2+2n+1}=\frac{220}{221}\)
\(\Leftrightarrow1-\frac{1}{2n^2+2n+1}=\frac{220}{221}\)
\(\Leftrightarrow\frac{2n^2+2n}{2n^2+2n+1}=\frac{220}{221}\Rightarrow n=10\)
a) \(-1\frac{1}{15}:2\frac{1}{2}=-\frac{16}{15}:\frac{5}{2}=-\frac{16}{15}\cdot\frac{2}{5}=-\frac{32}{75}\)
b) \(\frac{1}{3}-\frac{5}{14}\cdot\frac{21}{25}=\frac{1}{3}-\frac{1}{2}\cdot\frac{3}{5}=\frac{1}{3}-\frac{3}{10}=\frac{1}{30}\)
c) \(\frac{-5}{7}\cdot\frac{2}{11}+\frac{-5}{7}\cdot\frac{9}{11}+1\frac{5}{7}\)
\(=-\frac{5}{7}\left(\frac{2}{11}+\frac{9}{11}\right)+\frac{12}{7}\)
\(=-\frac{5}{7}\cdot1+\frac{12}{7}=-\frac{5}{7}+\frac{12}{7}=\frac{7}{7}=1\)
d) \(8\frac{1}{4}-\left(2\frac{5}{9}+3\frac{1}{4}\right)=8\frac{1}{4}-2\frac{5}{9}-3\frac{1}{4}=\left(8\frac{1}{4}-3\frac{1}{4}\right)-2\frac{5}{9}\)
\(=5-2\frac{5}{9}=5-\frac{23}{9}=\frac{22}{9}\)
e) \(\frac{1}{4}\cdot\frac{12}{13}+\frac{1}{4}\cdot\frac{1}{13}-25=\frac{1}{4}\left(\frac{12}{13}+\frac{1}{13}\right)-25=\frac{1}{4}\cdot1-25=\frac{1}{4}-25=-\frac{99}{4}\)
\(M=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{62}+\frac{1}{63}\)
\(M=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)\)
\(M< 1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32\)
\(M< 1+1+1+1+1+1\)
\(M< 1.6=6\left(đpcm\right)\)
đpcm là điều phải chứng minh đúng không bn soyeon_Tiểubàng giải?
Lời giải:
a. ĐKXĐ: $x\geq -9$
PT $\Leftrightarrow x+9=7^2=49$
$\Leftrightarrow x=40$ (tm)
b. ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$
$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$
$\Leftrgihtarrow 3\sqrt{2x+3}=15$
$\Leftrightarrow \sqrt{2x+3}=5$
$\Leftrightarrow 2x+3=25$
$\Leftrightarrow x=11$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2}{3}\)
d. ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)
\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)
\(\Leftrightarrow -1=9\) (vô lý)
Vậy pt vô nghiệm.
\(B=1+7+7^2+...+7^{63}\)
Nhận thấy từ số hạng thứ 2 của B đều chia hết cho 7, còn 1 chia 7 dư 1
nên B chia 7 dư 1
\(B=1+7+7^2+....+7^{63}\)
\(=1+\left(7+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{61}+7^{62}+7^{63}\right)\)
\(=1+7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{61}\left(1+7+7^2\right)\)
\(=1+\left(1+7+7^2\right)\left(7+7^4+...+7^{61}\right)\)
\(=1+57\left(7+7^4+...+7^{61}\right)\)
Ta thấy \(57\left(7+7^4+...+7^{61}\right)⋮57\)
nên B chia 57 dư 1
câu 2 là 3<1+1/2+1/3+1/4+...+1/62+1/63<6 nhé
mk ghi nhầm đề baif