K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

Bài 3:

a: Ta có: AD+DB=AB

AE+EC=AC

mà DB=EC và AB=AC

nên AD=AE

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)

nên BDEC là hình thang cân

b: Để BD=DE=EC thì BD=DE và DE=EC

BD=DE thì ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)

nên \(\widehat{DBE}=\widehat{EBC}\)

=>\(\widehat{ABE}=\widehat{EBC}\)

=>BE là phân giác của góc ABC

=>E là chân đường phân giác kẻ từ B xuống AC

Xét ΔEDC có ED=EC

nên ΔEDC cân tại E

=>\(\widehat{EDC}=\widehat{ECD}\)

mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ECD}=\widehat{DCB}\)

=>\(\widehat{ACD}=\widehat{BCD}\)

=>CD là phân giác của góc ACB

=>D là chân đường phân giác từ C kẻ xuống AB

Bài 2:

a: Ta có: ABCD là hình bình hành

=>AB//CD và AB=CD(1)

Ta có: M là trung điểm của AB

=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)

Ta có: N là trung điểm của CD

=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AM=MB=NC=ND

Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: Ta có AMCN là hình bình hành

=>AN//CM

Xét ΔDFC có

N là trung điểm của DC

NE//FC

Do đó: E là trung điểm của DF

=>DE=EF(4)

Xét ΔABE có

M là trung điểm của BA

MF//AE

Do đó: F là trung điểm của BE

=>BF=FE(5)

Từ (4) và (5) suy ra BF=FE=ED

2.tự vẽ hình 

a)Gọi O là giao điểm của hai đường chéo=>OD=OB(t/c)

Xét tgv OFD và tgv OEB có:

\(\widehat{FOD}=\widehat{EOB}\left(\text{đ}\text{ối}\text{đ}\text{ỉnh}\right)\)

\(DO=BO\left(cmt\right)\)

=> tgv OFD = tgv OEB (cgv-gn)

=> DF=BE

Mà DF//BE ( cùng vg với AC)

=> tg DEBF là hbn ( có cặp cạnh đối // và bằng nhau)

b) Ta có : \(\widehat{ADC}=\widehat{ABC}\)(hai góc so le trong)

\(\Rightarrow\widehat{CDK}=\widehat{CBH}\)

Xét tg CKD và tg CHB có :

\(\widehat{CDK}=\widehat{CBH}\)

\(\widehat{DKC}=\widehat{BHC}\left(=90\text{đ}\text{ộ}\right)\)

=> tg CKD = tg CHB (g.g)

\(\Rightarrow\frac{CK}{CD}=\frac{CH}{CB}\Rightarrow CD\cdot CH=CK\cdot CB\)

c) Xét tg ABE và tg AHC có :

\(\widehat{AEB}=\widehat{AHC}\)

\(\widehat{A}:chung\)

=> tg ABE đồng dạng tg AHC (g.g)

\(\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\Rightarrow AB\cdot AH=AC\cdot AE\)(1)

Xét tg ADF và tg ACK có :

\(\widehat{A}:chung\)

\(\widehat{\text{AF}D}=\widehat{AKC}\)

=> tg ADF đồng dạng tg ACK

\(\Rightarrow\frac{AD}{AC}=\frac{\text{AF}}{AK}\Rightarrow AD\cdot AK=AC\cdot\text{AF}\)(2)

Xét tgv AFD và tgv CEB có :

AD=BC(gt)

DF=BE(cmt)

=> tg AFD=tg CEB (ch-cgv)

=> AF=CE (3)

Từ (1); (2); (3) ta có :

\(AB\cdot AH+AD\cdot AK=AC\left(AE+\text{AF}\right)=AC\left(AE\cdot CE\right)=AC^2\)

20 tháng 12 2022

Câu 10:

góc A=180-130=50 độ

góc B=(180+50)/2=230/2=115 độ

góc C=180-115=65 độ

20 tháng 12 2022

có ai biết làm bài 11 ko a

21 tháng 8 2019

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Từ giả thiết ta có:

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ AH//CK.      ( 1 )

Áp dụng tính chất về cạnh của hình bình hành và tính chất của các góc so le ta có:

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án 

⇒ Δ ADH = Δ CBK

(trường hợp cạnh huyền – góc nhọn)

⇒ AH = CK (cạnh tương tứng bằng nhau)       ( 2 )

Từ ( 1 ) và ( 2 ) ta có tứ giác AHCK có cặp cạnh đối song song và bằng nhau là hình bình hành.

26 tháng 8 2021

Xét tg DKC và tg BHA có H=K =90 đỘ

                                         DC=AB( hbh ABCD)

                                         ABH=CBK( hbh ABCD, AB//DC)

Suy ra tg DKC=tg BHA( ch-gn)

=> CK=AH( 2 cạnh t/ư)

Ta có : AH vg góc DB

           CK vg góc DB

=> CK//AH

Xét tg AKCH có CK//AH(cmt)

                          CK=AH( cmt)

=> AKCH là hbh( dấu hiệu 3)

 

 

9 tháng 12 2018

Ta chứng minh AH//CK, AH = CK (DAHD = DCKB) Þ AHCK là hình bình hành (cặp cạnh đối song song và bằng nhau)