K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

Bài 1 :

Mình nghĩ phải sửa đề ntn :

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)

Vậy....

b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(q=x^2+x+1\)ta có :

\(A=q\left(q+1\right)-12\)

\(A=q^2+q-12\)

\(A=q^2+4q-3q-12\)

\(A=q\left(q+4\right)-3\left(q+4\right)\)

\(A=\left(q+4\right)\left(q-3\right)\)

Thay \(q=x^2+x+1\)ta có :

\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)

\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

7 tháng 2 2019

Cảm ơn ạ><

6 tháng 10 2021

a) \(-10x^3+2x^2=0\)

\(\Rightarrow-2x^2\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(5x\left(x-2016\right)-x+2016=0\)

\(\Rightarrow5x\left(x-2016\right)-\left(x-2016\right)=0\)

\(\Rightarrow\left(x-2016\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2016\\x=\dfrac{1}{5}\end{matrix}\right.\)

a: Ta có: \(-10x^3+2x^2=0\)

\(\Leftrightarrow-2x^2\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)

3 tháng 9 2016

Đặt \(Q\left(x\right)=x^4-x^3-10x^2+2x+4\)

Giả sử nhân tử khi phân tích P(x) là \(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Khai triển : \(P\left(x\right)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+x^3\left(c+a\right)+x^2\left(d+ac+b\right)+x\left(ad+bc\right)+bd\)

Áp dụng hệ số bất định : \(\begin{cases}c+a=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) . Giải ra được \(\begin{cases}a=-3\\b=-2\\c=2\\d=-2\end{cases}\)

Vậy \(P\left(x\right)=\left(x^2-3x-2\right)\left(x^2+2x-2\right)\)

 

3 tháng 9 2016

Giả sử:

\(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

\(=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)

Ta có:

\(\begin{cases}a+c=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) \(\Rightarrow\begin{cases}a=1\\b=1\\d=4\\c=-15\end{cases}\)

\(\Rightarrow P\left(x\right)=\left(x^2+x+1\right)\left(x^2-15x+4\right)\)

22 tháng 10 2016

a)3x2+7x-6

=3x2-2x+9x-6

=x(3x-2)+3(3x-2)

=(x+3)(3x-2)

b)8x2-2x-3

=8x2-6x+4x-3

=2x(4x-3)+(4x-3)

=(2x+1)(4x-3)

c)6x2-15x+6

=3(2x2-5x+2)

=3(2x2-x-4x+2)

=3[x(2x-1)-2(2x-1)]

=3(x-2)(2x-1)

d)10x2+7x-6

=10x2+12x-5x-6

=2x(5x+6)-(5x+6)

=(2x-1)(5x+6)

25 tháng 7 2019

\(3x^2+10x+3\)

\(=3x^2+x+9x+3\)

\(=x\left(3x+1\right)+3\left(3x+1\right)\)

\(=\left(3x+1\right)\left(x+3\right)\)

25 tháng 7 2019

\(3x^2+10x+3=3x^2+9x+x+3=3x\left(x+3\right)+\left(x+3\right)\)

                                 \(=\left(3x+1\right)\left(x+3\right)\)

chúc bn học tốt

22 tháng 10 2023

a) \(x^3+4x^2-21x\)

\(=x\left(x^2+4x-21\right)\)

\(=x\left(x^2-3x+7x-21\right)\)

\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)

\(=x\left(x-3\right)\left(x+7\right)\)

b) \(5x^3+6x^2+x\)

\(=x\left(5x^2+6x+1\right)\)

\(=x\left(5x^2+5x+x+1\right)\)

\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(5x+1\right)\)

c) \(x^3-7x+6\)

\(=x^3+2x^2-3x-2x^2-4x+6\)

\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)

\(=\left(x-2\right)\left(x^2+2x-3\right)\)

\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)

d) \(3x^3+2x-5\)

\(=3x^3+3x^2+5x-3x^2-3x-5\)

\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)

\(=\left(x-1\right)\left(3x^2+3x+5\right)\)

26 tháng 4 2019

cũng dễ thôi mà!!!

a, \(x^2-7x+6=x^2-x-6x+6\)

\(=x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(x-6\right)\left(x-1\right)\)

b, \(|2x+1|-5x=3\)(*)

TH1: \(2x+1\ge0=>x\ge\frac{-1}{2}\)

PT(*) <=> \(2x+1-5x=3=>x=\frac{-2}{3}\)(thỏa mãn)

TH2: \(2x+1< 0=>x< \frac{-1}{2}\)

PT(*) <=> \(-2x-1-5x=3=>x=\frac{4}{7}\)(ko thỏa mãn)

Vậy phương trình có tập nghiệm S=\(\left\{\frac{-2}{3}\right\}\)

12 tháng 11 2021

\(2x^3-10x^2+12x=2x\left(x^2-5x+6\right)=2x\left[\left(x^2-3x\right)-\left(2x-6\right)\right]=2x\left[x\left(x-3\right)-2\left(x-3\right)\right]=2x\left(x-2\right)\left(x-3\right)\)