Cho đường tròn tâm (O), đường kính AB cố định. Lấy điểm N cố định trên đường tròn, trên nửa đường tròn đường kính AB không chứa N lấy điểm M di động. Gọi I là trung điểm MN, kẻ IP vuông góc với MB. Khi M di chuyển động thì P chuyển động trên đường nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
Gọi H là chân đường vuông góc hạ từ M xuống tia phân giác ^BAC. Tam giác ADE có AH vừa là phân giác vùa là đường cao nên cân tại A.
Qua B vẽ BF//CE (F thuộc DE) => tam giác BDF cân tại B => BD = BF (1)
Mặt khác xét 2 tam giác BMF và CME có : BM = CM; ^BMF = ^CME ( đối đỉnh); ^MBF = ^MCE ( so le trong) => tam giác BMF = tg CME => BF = CE (2)
Từ (1) và (2) => đpcm
mấy câu còn lại bó tay
a) Vì AB là đường kính \(\Rightarrow\angle ANB=90\)
\(\Rightarrow\angle FNB+\angle FCB=90+90=180\Rightarrow BCFN\) nội tiếp
b) Vì AB là đường kính \(\Rightarrow\angle ADB=90\)
Xét \(\Delta ACE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle ADB=\angle ACE=90\\\angle BAEchung\end{matrix}\right.\)
\(\Rightarrow\Delta ACE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AB}\Rightarrow AD.AE=AB.AC\)