Thu gọn biểu thức:
A=1+1/2+1/2^2+1/2^3+...+1/2^2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
\(2A=1+2+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(1+2+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
\(A=\frac{2^{2013}-1}{2^{2012}}\)
Vậy \(A=\frac{2^{2013}-1}{2^{2012}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
=>2A=\(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
=>2A-A=\(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)=2-\frac{1}{2^{2012}}\)
=>A=\(\frac{2^{2013}-1}{2^{2012}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)\
\(A=\frac{1}{2014}\)
a: \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(x-3\right)^2\)
\(=4x^2+4x+1+4x^2-4x+1-2\left(x^2-6x+9\right)\)
\(=8x^2+2-2x^2+12x-18\)
\(=6x^2+12x-16\)
b: \(\left(x-1\right)^2-\left(3x+2\right)^2\)
\(=x^2-2x+1-9x^2-12x-4\)
\(=-8x^2-14x-3\)
c: \(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(6x+1\right)\left(6x-1\right)\)
\(=\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2=2^2=4\)
a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)
\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)
\(=-16x+8\)
b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
=27x-55
a: Ta có: \(\left(x+1\right)^2+\left(x-1\right)^2-2\left(1+x\right)\left(1-x\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x+1+x-1\right)^2\)
\(=4x^2\)
c: Ta có: \(3\left(x+2\right)^2-\left(3x+1\right)\left(x+5\right)+\left(x+5\right)^2\)
\(=3x^2+12x+12-3x^2-16x-5+x^2+10x+25\)
\(=x^2+6x+32\)
A = 1+1/2+1/2^2+1/2^3+...+1/2^2014
2A = 2+1+1/2+1/2^2+1/2^3+...+1/2^2013
2A - A=( 2+1+1/2+1/2^2+1/2^3+...+1/2^2013) - (1+1/2+1/2^2+1/2^3+...+1/2^2014)
A = 2 - 1/2^2014
Vậy .............................
Chúc em học tốt nha