Tính giá trị biểu thức A = 1^3 + 2^3 + 3^3 + ... + 100^3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-\dfrac{1}{3}+\dfrac{1}{3^2}-...-\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\)
\(=\dfrac{1}{3}\left(-1+\dfrac{1}{3}\right)+\dfrac{1}{3^3}\left(-1+\dfrac{1}{3}\right)+...+\dfrac{1}{3^{99}}\left(-1+\dfrac{1}{3}\right)\)
\(=\dfrac{-2}{3}\left(\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
Ta có:
\(B=\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
\(9B=3+\dfrac{1}{3}+...+\dfrac{1}{3^{97}}\)
\(9B-B=3-\dfrac{1}{3^{99}}\)
\(B=\dfrac{3-\dfrac{1}{3^{99}}}{8}\)
\(A=-\dfrac{2}{3}B=\dfrac{-2}{3}.\dfrac{3-\dfrac{1}{99}}{8}=\dfrac{\dfrac{1}{3^{100}}-1}{4}\)
A = -(1+2+3+...+100)
Số số hạng = \(\dfrac{100-1}{1}+1=100\) (số)
Tổng = \(\dfrac{\left(100+1\right)100}{2}=5050\)
=> A = -5050
\(A=\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(3^2A=3^2\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-3^2\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(9A=\left(1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(3+\frac{1}{3}+...+\frac{1}{3^{97}}\right)\)
\(9A-A=\left(1-\frac{1}{3^{100}}\right)-\left(3-\frac{1}{3^{99}}\right)\)
\(8A=1-3=-2\)
A=\(\frac{-2}{8}=\frac{-1}{4}\)
\(B=4\left|\frac{-1}{4}\right|+\frac{1}{3^{100}}=1+\frac{1}{3^{100}}=1\)
Vậy B=1