Cho tam giác ABC nhọn có O là giao điểm của 3 đường trung trực. Tia AO cắt BC tại D. Trên các cạnh AB và AC lần lượt lấy E, F sao cho DE=DB, DF=DC. Cmr DA là tia phân giác của góc EDF
Help
Làm xong mình tickk cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b:Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
a) Ta có BFC = 90* ( góc nội tiếp chắn nửa đường tròn )
=> AB vuông góc CF
BEC = 90* ( góc nội tiếp chắn nửa đường tròn )
=> AC vuông góc BE
Tam giác ABC có BE, CF là đường cao ( AB vuông góc CF tại F và AC vuông góc BE tại E )
Mà BE và CF cắt nhau tại H
Suy ra H là trực tâm tam giác ABC
=> AH vuông góc BC tại D
AH . AD = AE . AC
Xét tam giác AHE và ADC
AEH = ADC = 90*
góc A : góc chung
Vậy tam giác AEH đồng dạng tam giác ADC
=> \(\frac{AE}{AD}\)=\(\frac{AH}{AC}\)
=> AE . AC = AD . AH
b) Gợi ý nhé bạn
Ta chứng minh tứ giác BFHD nội tiếp
=> DFH = HBD
Mà HBD = CFE ( cùng chắn CE )
Nên DFH = CFE
=> FC là phân giác góc EFD
=> DFE = 2 CFE
Mà EOC = 2 CFE ( góc ở tâm và góc nội tiếp cùng chắn cung CE )
Suy ra DFE = EOC
=> Tứ giác EODF nội tiếp ( góc trong = góc đối ngoài )
c) Tứ giác EODF nội tiếp
=> EDF = EOF
Mà EOF = 2 ECF ( góc ở tâm và góc nội tiếp cùng chắn EF )
Nên EDF = 2 ECF
Tam giác DFL cân tại D
=> EDF = 2 FLD = 2 FLE
Mà EDF = 2 ECF (cmt)
Nên FLE = ECF
=> Tứ giác EFCL nội tiếp
Mà tam giác CEF nội tiếp (O)
=> L thuộc (O)
Tam giác BLC nội tiếp (O). Có BC là đường kính
Suy ra tg BLC vuông tại L
=> BLC = 90*