K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2020

Ta có: Sin a = \(\frac{-3}{\sqrt{10}}\)

Cách làm tự giải.

Chúc bạn học tốt!

8 tháng 6 2020

Hình như câu 2 b, chỗ cos phải là -0,8 chứ nhỉ

8 tháng 6 2020

vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-

NV
25 tháng 4 2019

\(0< a< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa>0\end{matrix}\right.\)

\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}\)

\(\Rightarrow cosa=\frac{1}{2}\Rightarrow sina=cosa.tana=\frac{\sqrt{3}}{2}\)

\(cos2a=2cos^2a-1=-\frac{1}{2}\)

\(sin2a=2sina.cosa=\frac{\sqrt{3}}{2}\)

\(\Rightarrow sin\left(2a-\frac{\pi}{3}\right)=sin2a.cos\frac{\pi}{3}-cos2a.sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}\)

\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=-2-\sqrt{3}\)

NV
29 tháng 3 2019

Do \(\pi< a< \frac{3\pi}{2}\Rightarrow cosa< 0\)

\(cosa=-\sqrt{1-sin^2a}=-\sqrt{1-0,6^2}=-\frac{4}{5}\)

\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)

\(cota=\frac{1}{tana}=-\frac{4}{3}\)

NV
30 tháng 3 2019

Ý bạn là \(\pi< a< \frac{3\pi}{2}\) và tìm \(cosa,tana,cota\)?

Khi đó \(cosa< 0\) \(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{12}{13}\)

\(tana=\frac{sina}{cosa}=\frac{5}{12}\)

\(cota=\frac{1}{tana}=\frac{12}{5}\)

NV
24 tháng 4 2019

a/ \(cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{5}}{3}\)

\(tana=\frac{sina}{cosa}=-\frac{2\sqrt{5}}{5}\) ; \(cota=\frac{1}{tana}=-\frac{\sqrt{5}}{2}\)

b/ \(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}\)

\(\Rightarrow cosa=-\frac{1}{\sqrt{1+tan^2a}}=-\frac{\sqrt{3}}{3}\); \(sina=-\sqrt{1-cos^2a}=-\frac{\sqrt{6}}{3}\)

\(cota=\frac{1}{tana}=\frac{\sqrt{2}}{2}\)

c/ \(sina=\sqrt{1-cos^2a}=\frac{\sqrt{5}}{5}\); \(tana=\frac{sina}{cosa}=\frac{1}{2}\); \(cota=\frac{1}{tana}=2\)

d/ \(sina=\sqrt{1-cos^2a}=\frac{\sqrt{209}}{15}\); \(tana=\frac{sina}{cosa}=\frac{\sqrt{209}}{4}\); \(cota=\frac{1}{tana}=\frac{4}{\sqrt{209}}\)

e/ \(\frac{1}{sin^2a}=1+cot^2a\Rightarrow sin^2a=\frac{1}{1+cot^2a}\Rightarrow sina=\frac{-1}{\sqrt{1+cot^2a}}\)

\(\Rightarrow sina=-\frac{\sqrt{10}}{10}\); \(cosa=\sqrt{1-sin^2a}=\frac{3\sqrt{10}}{10}\); \(cota=\frac{1}{tana}=-\frac{1}{3}\)

f/ \(cosa=-\frac{1}{\sqrt{1+tan^2a}}=-\frac{\sqrt{5}}{5}\); \(sina=tana.cosa=\frac{2\sqrt{5}}{5}\); \(cota=\frac{1}{tana}=-\frac{1}{2}\)

g/ Đề sai, trong khoảng \(\pi< a< \frac{3\pi}{2}\) thì \(\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\) nên \(tana>0\)

\(\Rightarrow tana\) không thể nhận giá trị âm, ko có góc \(\alpha\)

16 tháng 5 2020

--.--  \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ

16 tháng 5 2020

\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)

\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)

\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)

\(\cos2a=2\cos^2a-1=\frac{7}{25}\)

\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)

\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)

\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)

\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)

\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)

Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)

\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)

10 tháng 5 2017

a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(tan\alpha,cot\alpha>0\)\(sin\alpha,cos\alpha< 0\).
\(\left\{{}\begin{matrix}tan\alpha-3cot\alpha=6\\tan\alpha cot\alpha=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\\left(6+3cot\alpha\right)cot\alpha=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\3cot^2\alpha+6cot\alpha-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\cot\alpha=\dfrac{-3+2\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=3+2\sqrt{3}\\cot\alpha=\dfrac{-3+2\sqrt{3}}{3}\end{matrix}\right.\).
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Rightarrow cos^2\alpha=\dfrac{1}{tan^2\alpha+1}\).
Có thể đề sai.

NV
14 tháng 6 2020

\(6sin^4x-2cos^4x=1\Leftrightarrow6sin^4x-2\left(1-sin^2x\right)^2-1=0\)

\(\Leftrightarrow6sin^4x-2\left(sin^4x-2sin^2x+1\right)-1=0\)

\(\Leftrightarrow4sin^4x+4sin^2x-3=0\)

\(\Leftrightarrow\left(2sin^2x+3\right)\left(2sin^2x-1\right)=0\)

\(\Leftrightarrow2sin^2x=1\Rightarrow sin^2x=\frac{1}{2}\Rightarrow cos^2x=\frac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}sin^4x=\frac{1}{4}\\cos^4x=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow C=\frac{1}{4}+3.\frac{1}{4}=1\)