K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(S_{m-n}=\frac{\left(\sqrt{2}+1\right)^m}{\left(\sqrt{2}+1\right)^n}+\frac{\left(\sqrt{2}-1\right)^m}{\left(\sqrt{2}-1\right)^n}\)

\(=\left(\sqrt{2}+1\right)^m\cdot\left(\sqrt{2}-1\right)^n+\left(\sqrt{2}-1\right)^m\left(\sqrt{2}+1\right)^n\)

Do đó:

\(S_{m+n}+S_{m-n}=\left(\sqrt{2}+1\right)^{m+n}+\left(\sqrt{2}-1\right)^{m+n}+\left(\sqrt{2}+1\right)^m\cdot\left(\sqrt{2}-1\right)^n+\left(\sqrt{2}-1\right)^m\cdot\left(\sqrt{2}+1\right)^n\)

\(=\left(\sqrt{2}+1\right)^m\left[\left(\sqrt{2}+1\right)^n+\left(\sqrt{2}-1\right)^n\right]+\left(\sqrt{2}-1\right)^m\cdot\left[\left(\sqrt{2}-1\right)^n+\left(\sqrt{2}+1\right)^n\right]\)

\(=\left[\left(\sqrt{2}+1\right)^n+\left(\sqrt{2}-1\right)^n\right]\cdot\left[\left(\sqrt{2}+1\right)^m+\left(\sqrt{2}-1\right)^m\right]\)

\(=S_m\cdot S_n\)(đpcm)

28 tháng 8 2016

Ta có S m-n = (√2 + 1)/(√2 + 1)+ (√2 - 1)m /(√2 - 1)n = (√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n

Từ đó 

S m+n + S m-n = (√2 + 1)m+n + (√2 - 1)m+n +(√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)

= (√2 + 1)m [(√2 + 1)+ (√2 -1)n] + (√2 - 1)m [(√2 - 1)n + (√2 + 1)n]

= [(√2 + 1)n + (√2 - 1)n] [(√2 + 1)m + (√2 - 1)m]

= S​ .S n

28 tháng 8 2016

sorry mk ko bít!!! ^^

6476575756876982525435465658768768676968256346564576576576

28 tháng 2 2021

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

28 tháng 2 2021

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

15 tháng 6 2015

* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương

Ta có 1!+2!+3!+4! chia 10 dư 3

5!+6!+....+n! chia hết cho 10

Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn      (1)

* Chứng mịnh A không thể là lũy thừa với mũ lẻ

+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên

+) Với n lớn hơn hoặc bằng 5

Ta có 1!+2!+3!+4!+5! chia hết cho 9

6!+7!+....+n! chia hết cho 9

=> A chia hết cho 9

+) Ta thấy 9!+10!+...+n! chia hết cho 7

còn 1!+2!+...+8! chia cho 27 dư 9            (2)

Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)

15 tháng 6 2015

Lâu rồi không học quên mất

24 tháng 12 2018

Đáp án là C. Ta có a,b∈N* không suy ra a -1, b -1∈N* . Do vậy không áp dụng được giả thiết quy nạp cho cặp {a -1, b -1}.

Chú ý: nêu bài toán trên đúng thì ta suy ra mọi số tự nhiên đều bằng nhau. Điều này là vô lí.