1.Tìm tập nghiệm D của bpt x²-14x-15.
2. Tìm tập nghiệm của bpt √x²-3x-4<2-x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)
- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)
Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)
2.
Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)
3.
\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)
4.
\(4x^2+4x+1-3x+9>4x^2+10\)
\(\Leftrightarrow x>0\)
5.
\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)
6.
\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)
\(-x^2-2\left(m-1\right)x+2m-1>0\)
\(\Leftrightarrow x^2+2\left(m-1\right)x-2m+1< 0\)
\(f\left(x\right)=x^2+2\left(m-1\right)x-2m+1\)
Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)=0\) có hai nghiệm phân biệt thỏa mãn \(x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+2m-1>0\\f\left(1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2>0\\1+2\left(m-1\right)-2m+1\le0\\-2m+1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow m\ge\dfrac{1}{2}\)
ĐK: \(x\ge\frac{2}{3}\)
\(\left(\sqrt{3x-2}-1\right)\sqrt{x^2+1}< 0\)
<=> \(\sqrt{3x-2}-1< 0\)
<=> \(\sqrt{3x-2}< 1\)
<=> 3x - 2 < 1
<=> x < 1
Đối chiếu đkxđ: Vậy \(\frac{2}{3}\le x< 1\)