Cho x,y,z là các số thực thỏa mãn (x-y)(x-z)=1; y ≠ z.
Chứng minh rằng: \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\ge4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+y-2017z}{z}=\dfrac{y+z-2017x}{x}=\dfrac{z+x-2017y}{y}\)
<=> \(\dfrac{x+y}{z}-2017=\dfrac{z+y}{x}-2017=\dfrac{z+x}{y}-2017\)
<=> \(\dfrac{x+y}{z}=\dfrac{z+y}{x}=\dfrac{z+x}{y}\)
đặt x+y+z = t
=> \(\dfrac{t-z}{z}=\dfrac{t-x}{x}=\dfrac{t-y}{y}< =>\dfrac{t}{z}-1=\dfrac{t}{x}-1=\dfrac{t}{y}-1\) \(< =>\dfrac{t}{z}=\dfrac{t}{y}=\dfrac{t}{x}\)
=> x=y=z
ta lại có
\(P=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{y}\right)\)
vì x=y=z => P = \(\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
có: \(x\left(2x-3\right)^2\ge0\Leftrightarrow4x^3-12x^2+9x\ge0\Leftrightarrow4x^3-12x^2+12x-4\ge3x-4\)
\(\Leftrightarrow4\left(x-1\right)^3\ge3x-4\)
\(\Leftrightarrow\left(1-x\right)^3\le1-\frac{3}{4}x\).
tương tự và cộng lại ta có ngay đpcm.
Dấu = xảy ra khi 2 số bằng 1,5; 1 số bằng 0
Ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow\)\(x+y=x+y-2z+2\sqrt{\left(x-z\right)\left(y-z\right)}\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)
Theo giả thiết, ta có:
theo giả thiết, ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}-\frac{1}{x}=\frac{1}{y}\)\(\Rightarrow\frac{x-z}{zx}=\frac{1}{y}\Rightarrow x-z=\frac{zx}{y}\)
Tương tự, ta có: \(y-z=\frac{zy}{x}\)
Do đó: \(2\sqrt{\left(x-z\right)\left(y-z\right)}=2\sqrt{\frac{zx}{y}.\frac{zy}{x}}=2z\) (1)
ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)(2)
Thay (2) vào (1) ta thấy (2) luôn đúng
Suy ra ĐPCM
Lời giải:
$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$
$=(2x-1)(2y-1)(2z-1)+1$
Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$
$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$
$\Rightarrow 2\text{VT}\leq 2$
$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.
Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.
Đặt \(\left\{{}\begin{matrix}x-y=a\\x-z=b\end{matrix}\right.\) \(\Rightarrow z-y=a-b\) và \(ab=1\)
\(VT=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=\frac{a^2+b^2}{a^2b^2}+\frac{1}{\left(a-b\right)^2}\)
\(VT=a^2+b^2+\frac{1}{\left(a-b\right)^2}=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2ab=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\)
\(VT\ge2\sqrt{\frac{\left(a-b\right)^2}{\left(a-b\right)^2}}+2=4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-y\right)\left(x-z\right)=1\\\left(y-z\right)^2=1\end{matrix}\right.\)