Tìm số có ba chữ số biết rằng số đó gấp 17 lần tổng các chữ số của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abc
\(\Rightarrow abc=13\times\left(a+b+c\right)\)
\(\Rightarrow100\times a+10\times b+c=13\times a+13\times b+13\times c\)
\(\Rightarrow87\times a=3\times b+12\times c\)
\(\Rightarrow29\times a=b+4\times c\)
Ta có \(c\le9;b\le9;\Rightarrow b+4\times x\Leftarrow45\Rightarrow a=1\)
\(\Rightarrow29=b+4\times x\)
Ta thấy 29 là số lẻ ;\(4\times c\)là số chẵn \(\Rightarrow b\)lẻ \(\Rightarrow\)b=1 hoặc b=3 hoặc b=5 hoặc b=7 hoặc b=9
Thay các giá trị của b vào 29=\(b+4\times c\)để tìm c
Ta có các giá trị b=1 thì c=7 ; b=5 thì c = 6 ; b=9 ; thì b = 5
Các số thỏa mãn là 117 ; 156 ; 195
Chúc bạn học tốt !!!
Gọi số cần tìm là ab
Mà số đó gấp 7 lần tổng các chữ số của nó
\(\Rightarrow\)ab=7.(a+b)
Ta có:ab=7.(a+b)
10a+b=7a+7b
10a-7a=7b-b
3a=6b(1)
Từ 1 suy ra được a=6;b=3
Vậy số cần tìm là 63
Câu2:
Gọi số cần tìm là ab
Mà số đó gấp 8 lần tổng các chữ số của nó
\(\Rightarrow\)ab=8x(a+b)
Ta có:ab=8x(a+b)
10a+b=8a+8b
10a-8a=8b-b
2a=7b(1)
Từ(1) suy ra a=7;b=2
Vậy số cần tìm là 72
a ) Gọi số đó là ab .Theo đề bài ra ta có : b ) Gọi sô đó là ab .Theo đề bài ra ta có :
ab = 6 x ( a + b ) ab = 7 x ( a + b )
10 x a + b = 6 x a + 6 x b a x 10 + b = 7 x a + 7 x b
10 x a - 6 x a = 6 x b - b 10 x a - 7 x a = 7 x b - b
4 x a = 5 x b 3 x a = 6 x b
=> số đó là 45 => ab = 36
c ) ab = 8 x ( a + b )
a x 10 + b = 8 x a + 8 x b
a x 10 - 8 x a = 8x b - b
2 x a = 7 x b
=> ab = 27
d)
ab = 9 x ( a + b )
a x 10 + b = 9 x a + 9 x b
a x 10 - 9 x a = 9 x b - b
a x 1 = 9 x 8
=>n số đó là 18
Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
a)gọi số đó là :ab
ab = 6 x (a+b)
10a + b= 6a + 6b
4 x a= 5 x b
vậy ab = 54
Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
gọi số đó là abc (có gạch trên đầu nhé)
ta có
abc=13(a+b+c)
=>a100+b10+c=13a+13b+13c (1)
=>87a=3b+12c => 29a=b+4c
vì a,b,c là chữ số=>a =1 nếu a>=2 thì b,c sẽ>10
=>b+4c=29
vì 29 :4 dư 1
4c : hết cho 4
=>b chia 4 dư 1
=>b=1,5,9
nếu b=1=> số đó là 117
b=5=>là 156
b=9=> là 195
Gọi số đó là ab. (0<a; b <10). Ta có:
1/ Gấp 7 lần: <=> ab=7(a+b) <=> 10a+b=7(a+b) <=> 10a+b=7a+7b
<=> 3a=6b => a=2b => b=1; 2; 3; 4 và a=2; 4; 6; 8
Các số cần tìm là: 21; 42; 63; 84
2/ Gấp 6 lần: <=> ab=6(a+b) <=> 10a+b=6(a+b) <=> 10a+b=6a+6b
<=> 4a=5b => \(a=\frac{5b}{4}\) => b=4 và a=5
Các số cần tìm là: 45
3/ Gấp 6 lần: <=> ab=8(a+b) <=> 10a+b=8(a+b) <=> 10a+b=8a+8b
<=> 2a=7b => \(a=\frac{7b}{2}\) => b=2 và a=7
Các số cần tìm là: 72
4/ Gấp 9 lần: <=> ab=6(a+b) <=> 10a+b=9(a+b) <=> 10a+b=9a+9b
<=> a=8b => b=1 và a=8
Các số cần tìm là: 81
Đầu tiên gọi số đó là ab. Theo đề thì ab = ( a + b ) * x ( x là số lần trong đề )
Ta có :
a * 10 + b = a * x + b * x
a * 10 - a * x = b * x - b
a * ( 10 - x ) = b * ( x - 1 ) (*)
Ta sẽ sử dụng công thức (*) để giải các bài trên.
Giải :
a) Gọi số đó là ab
Theo đề thì ab = ( a + b ) * 6
Ta có :
a * 10 + b = a * 6 + b * 6
a * 10 - a * 6 = b * 6 - b
a * ( 10 - 6 ) = b * ( 6 - 1 )
a * 4 = b * 5
Vậy a phải chia hết cho 5. Vì a khác 0 và là số có 1 chữ số nên a = 5.
Thay a = 5 ta có b = 4.
Vậy số đó là 54.
b) Gọi số đó là ab.
Theo đề thì ab = ( a + b ) * 8
Ta có :
a * 10 + b = a * 8 + b * 8
a * 10 - a * 8 = b * 8 - b
a * ( 10 - 8 ) = b * ( 8 - 1 )
a * 2 = b * 7
Vậy a chỉ có thể chia hết cho 7. Vì a khác 0 và là số có 1 chữ số nên a = 7.
Thay a = 7 vào biểu thức, ta có b = 2.
Vậy số đó là 72.
c) Gọi số đó là ab.
Theo đề thì ab = ( a + b ) * 9
Ta có :
a * 10 + b = a * 9 + b * 9
a * 10 - a * 9 = b * 9 - b
a * ( 10 - 9 ) = b * ( 9 - 1 )
a = b * 8
Vậy a chia hết cho 8. Vì a khác 0 và là số có 1 chữ số nên a = 8.
Thay a = 8 vào biểu thức được b = 1.
Vậy số đó là 81.
Đ/s : a) 54; b) 72; c ) 81.
Nhận xét : với mọi x thỏa 1 < x < 10 thì số cần tìm luôn là số chia hết cho 9.
c)Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81