Cho tam giác ABC, trực tâm H. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Chứng minh rằng: a) BDCH là hình bình hành. b) ∠BAC + ∠BDC = 1800 c) H, M, D thẳng hàng ( M là trung điểm của BC) d) OM = 1/2AH ( O là trung điểm của AD). Giải và có hình với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì BHCD có các cặp cạnh đối song song nên là hình bình hành.
b) Tứ giác ABCD có A B D ^ = A C D ^ = 90 0 m à B A C ^ = 60 0 nên B D C ^ = 120 0
a)BH vuông góc với AC
CD vuông góc với AC =>BH//CD
Tương tự HC//BD =>BDCH là HBH
b)góc BDC=góc BHC
HC cắt AB tại E => góc AEH=900
HB cắt AC tại F => góc AFH=900
=>góc EHF=góc BHC= góc BDC
góc AEH+góc AFH+góc EHF+góc ABC =3600
=>góc BDC+góc ABC=1800
a)BH vuông góc với AC
CD vuông góc với AC =>BH//CD
Tương tự HC//BD =>BDCH là HBH
b)góc BDC=góc BHC
HC cắt AB tại E => góc AEH=900
HB cắt AC tại F => góc AFH=900
=>góc EHF=góc BHC= góc BDC
góc AEH+góc AFH+góc EHF+góc ABC =3600
=>góc BDC+góc ABC=1800
a: Xét tứ giác BDCH có
BH//CD
BD//CH
Do đó: BDCH là hình bình hành
b: \(\widehat{BDC}=180^0-60^0=120^0\)
Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
a: Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành