Tìm số nguyên x biết:
a) x+4/6 = 1/x+5
b)x+1/2 = 21/x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x-2)(y-3)=5
=>\(\left(x-2\right)\cdot\left(y-3\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x-2;y-3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;8\right);\left(7;4\right);\left(1;-2\right);\left(-3;2\right)\right\}\)
b: (2x-1)*(y-4)=-11
=>\(\left(2x-1\right)\cdot\left(y-4\right)=1\cdot\left(-11\right)=\left(-11\right)\cdot1=\left(-1\right)\cdot11=11\cdot\left(-1\right)\)
=>\(\left(2x-1;y-4\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(-5;5\right);\left(0;15\right);\left(6;3\right)\right\}\)
c: xy-2x+y=3
=>\(x\left(y-2\right)+y-2=1\)
=>\(\left(x+1\right)\left(y-2\right)=1\)
=>\(\left(x+1\right)\cdot\left(y-2\right)=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y-2\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;3\right);\left(-2;1\right)\right\}\)
a) x3-1-(x2+2x)(x-2)=5
⇔ x3-1-x3+4x=5
⇔ 4x=6
⇔ \(x=\dfrac{3}{2}\)
a) PT \(\Leftrightarrow x^2-x-x^2+2x=5\) \(\Rightarrow x=5\)
Vậy ...
b) PT \(\Leftrightarrow8x=16\) \(\Rightarrow x=2\)
Vậy ...
a: Ta có: \(x\left(x-1\right)-x^2+2x=5\)
\(\Leftrightarrow x^2-x-x^2+2x=5\)
hay x=5
b: Ta có: \(2x\left(3x+4\right)-6x^2=16\)
\(\Leftrightarrow6x^2+8x-6x^2=16\)
\(\Leftrightarrow8x=16\)
hay x=2
a: =>x/-3=3
hay x=-9
b: =>x/9=-1/9
hay x=-1
c: =>x+1/5=-1/3
hay x=-8/15
d: =>-7/x=-7/9
hay x=9
a, \(\dfrac{x}{-3}=3\Leftrightarrow x=-9\)
b, \(\dfrac{x}{9}=-\dfrac{1}{9}\Rightarrow x=-1\)
c, \(\dfrac{x+3}{15}=-\dfrac{6}{15}\Rightarrow x=-9\)
d, \(\dfrac{42}{-54}=-\dfrac{42}{6x}\Rightarrow6x=54\Leftrightarrow x=9\)
a) \(\left(x-1\right)^3\)
\(=x^3-3x^2+3x-1\)
b) \(\left(2x-3y\right)^3\)
\(=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^3+\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
Bài 3:
a: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=5\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=5\)
\(\Leftrightarrow12x=13\)
hay \(x=\dfrac{13}{12}\)
b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=4\)
\(\Leftrightarrow x^3-1-x^3+4x=4\)
\(\Leftrightarrow4x=5\)
hay \(x=\dfrac{5}{4}\)
\(a,\dfrac{6}{5}=\dfrac{18}{x}\\ \Rightarrow x=18:\dfrac{6}{5}\\ \Rightarrow x=15\\ b,\dfrac{3}{4}=\dfrac{-21}{x}\\ \Rightarrow x=-21:\dfrac{3}{4}\\ \Rightarrow x=-28\\ c,\dfrac{2}{-7}=\dfrac{18}{x}\\ \Rightarrow x=18:\dfrac{2}{-7}\\ \Rightarrow x=-63\\ d,\dfrac{-5}{2}=\dfrac{10}{-x}\\ \Rightarrow x=-10:\dfrac{-5}{2}\\ \Rightarrow x=4\)
\(a,\dfrac{6}{5}=\dfrac{18}{x}\Rightarrow6.x=5.18=90\\ \Rightarrow6.x=90\\ \Rightarrow x=15\\ b,\dfrac{3}{4}=\dfrac{-21}{x}\Rightarrow3.x=4.21=84\\ \Rightarrow x=28\)
a: x/3-1/6=1/5
=>x/3=11/30
hay x=11/90
b: =>1/2x=2
hay x=4
c: =>2/3:x=-7-1/3=-22/3
=>x=-1/11
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
a, \(\frac{x+4}{6}=\frac{1}{x+5}\)ĐKXĐ : x \(\ne\)-5
\(\left(x+4\right)\left(x+5\right)=6\)
TH1 : \(x+4=6\Leftrightarrow x=2\)
\(x+5=1\Leftrightarrow=-4\)
Tương tự đến hết
b, \(\frac{x+1}{2}=\frac{2}{x+2}\)ĐKXĐ : x \(\ne\)-2
\(\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Điều kiện xác định là đúng.Cj nghĩ phần a em sai rồi.
a, \(\frac{x+4}{6}=\frac{1}{x+5}\)
\(\left(x+4\right)\left(x+5\right)=6\)
\(x^2+9x+20=6\)
\(x^2+9x+14=0\)
\(\Delta=b^2-4ac=9^2-4.1.14=81-56=25>0\)
Nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-9-\sqrt{25}}{2.1}=\frac{-9-5}{2}=-\frac{14}{2}=-7\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-9+\sqrt{25}}{2}=\frac{-9+5}{2}=-\frac{4}{2}=-2\)