Cho A=\(\frac{3n-5}{n+4}\).Tim n \(\in\)Z de A co gia tri nguyen
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho phan so A= (6n- 1)/3n+2
tim n thuocZ de a co gia tri nguyen
tim n thuoc Z de a co gia tri lon nhat
câu GTLN nè:
A= \(2-\frac{5}{3n+2}\) => hiệu lớn nhất <=> số trừ: \(\frac{5}{3n+2}\) bé nhất vì 3n+2 thuộc Ư(5) nên ta xét:
* 3n+2=-1 => 5/-1=-5
* 3n+2=1 => 5/1=5
* 3n+2=5 => 5/5=1
* 3n+2=-5 => 5/-5=-1
=> 3n+2=-1 là nhỏ nhất <=> n= -1 (t/m đk)
cho A=6n-1/3n+1(n thuoc z) hoi a tim n de A nguyen b tim n de A co gia tri nho nhat
Giải:Ta có:A=\(\frac{6n-1}{3n+1}=\frac{6n+2-3}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{3}{n+1}=2-\frac{3}{n+1}\)
a,Để A nguyên thì \(\frac{3}{n+1}\in Z\)\(\Rightarrow3⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow n\in\left\{-4,-2,0,2\right\}\)
b,Để A có GTNN thì \(\frac{3}{n+1}\) lớn nhất
\(\Rightarrow n+1\) bé nhất và n+1>0
\(\Rightarrow n+1=1\Rightarrow n=0\)
Nên GTNN của A=-1
Ta có \(\frac{3n-5}{n+4}=\frac{\left(3n+12\right)-17}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)
Để A có giá trị nguyên thì \(\frac{3n-5}{n+4}\)là số nguyên
Tương đương với \(3-\frac{17}{n+4}\) là số nguyên hay \(\frac{17}{n+4}\) là số nguyên
\(=>17⋮n+4=>n+4\inƯ\left(17\right)=\left\{17;1;-1;-17\right\}\)
\(=>n\in\left\{13;-3;-5;-21\right\}\)(th n thuôc Z)
\(3x-5=3x-5+12-12=3x+12-5-12=3x+12-17\)
đến đây mình dùng công thức \(ab+ac=a\left(b+c\right)\)
ta có \(3x+12-17=3.x+3.4-17=3\left(x+4\right)-17\)
thì đương nhiên \(\frac{3\left(x+4\right)-17}{x+4}=\frac{3\left(x+4\right)}{x+4}-\frac{17}{x+4}=3-\frac{17}{x+4}\)
xong rồi đấy bạn ( bạn ấy nhờ mình giải thích chỗ này nhé )
\(A=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)
Để A có giá trị nguyên => \(\frac{17}{n+4}\)có giá trị nguyên
=> \(17⋮n+4\)
=> \(n+4\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
n+4 | -17 | -1 | 1 | 17 |
n | -21 | -5 | -3 | 13 |
\(A=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=\frac{-17}{n+4}\)
\(\Rightarrow n+4\inƯ\left(-17\right)=\left\{\pm1;\pm17\right\}\)
Ta lập bảng
n + 4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
3.a) tổng các cs của tử là 3 nên chia hết cho 3
b) tổng các cs của rử là 9 nên chia hết cho 9
Để A nguyên thì 3n-5 phải chia hết cho n+4
Bạn biết làm rùi chứ?
A=3n+4/n-1=3n-3+7/n-1=3(n-1)/n-1+7/n-1=3+7/n-1. Vì A nguyên, 3 nguyên nên 7/n-1 nguyên => n-1 E Ư(7)
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
b/6n-3/3n+1=6n+2-5/3n+1=2(3n+1)/3n+1-5/3n+1=2-5/3n+1=>3n+1 E Ư(5)
3n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2/3 | 4/3 | -2 |
Tim gia tri n thuoc N, biet : 2n2 + 1/n2 - 1 de A nhan gia tri nguyen
\(A=\frac{3n-5}{n+4}\) là số nguyên
\(\Leftrightarrow3n-5⋮n+4\)
\(\Rightarrow3n+12-17⋮n+4\)
\(\Rightarrow3\left(n+4\right)-17⋮n+4\)
Vì \(3\left(n+4\right)⋮n+4\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(\Rightarrow n\in\left\{-3;-5;13;-21\right\}\)
Vậy \(n\in\left\{-3;-5;-13;-21\right\}\).
\(A=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)
Để A có giá trị nguyên => \(\frac{17}{n+4}\)có giá trị nguyên
=> \(17⋮n+4\)
=> \(n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)