Cho tam giác ABC có AB = 9 ,cm, điểm D thuộc cạnh AB sao cho AD = 6 ,cm. Kẻ DE song song với BC ( (E thuộc AC) ), kẻ EF song song với CD ( (F thuộc AB) ). Tính độ dài AF .
GIÚP MÌNH VỚI CÀNG NHANH CÀNG TỐT, MÌNH SẼ TICK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Ta-lét:
Với EF // CD ta có A F A D = A E A C
Với DE // BC ta có A E A C = A D A B
Suy ra A F A D = A D A B , tức là A F 6 = 6 9
Vậy AF = 6.6 9 = 4 cm
Đáp án: C
Đáp án đúng là: A
Áp dụng định lí Thalès:
• Với DE // BC (E ∈ AC) ta có: \(\dfrac{{A{\rm{D}}}}{{AB}} = \dfrac{{A{\rm{E}}}}{{AC}} = \dfrac{6}{{9}} = \dfrac{2}{3}\)
• Với EF // CD (F ∈ AB) ta có: \(\dfrac{{AF}}{{A{\rm{D}}}} = \dfrac{{A{\rm{E}}}}{{AC}} = \dfrac{2}{3}\)
Suy ra: \({\rm{AF}} = \dfrac{2}{3}A{\rm{D}} = \dfrac{2}{3}.6 = 4(cm)\)
Vậy AF = 4 cm.
434
AI TICK GIÙM MÌNH MỘT CÁI ĐI MÀ LÀM ƠN ĐÓ!!!!!!!!!!!!!!!!!!!!!!!
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
ta có: DE// AC; D thuộc BC; E thuộc AB của tg ABC
=> AE/AB = CD/BC ( định lí Ta-lét) (*)
ta có: DF// AB ....
=> AF/AC = BD/BC ( định lí Ta-lét)
Từ (*) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD}{BC}+\frac{BD}{BC}=\frac{CD+BD}{BC}=\frac{BC}{BC}=1\)
hình tự vẽ
Xét ΔCAB và ΔCED có
\(\widehat{CAB}=\widehat{CED}\)(hai góc so le trong, DE//AB)
\(\widehat{ACB}=\widehat{ECD}\)(hai góc đối đỉnh)
Do đó: ΔCAB đồng dạng với ΔCED
=>\(\dfrac{CA}{CE}=\dfrac{AB}{ED}=\dfrac{CB}{CD}\)
=>\(\dfrac{12}{CE}=\dfrac{18}{ED}=\dfrac{9}{3}=3\)
=>\(CE=\dfrac{12}{3}=4\left(cm\right);ED=\dfrac{18}{3}=6\left(cm\right)\)
Áp dụng định lí Ta-lét:
+với EF//CD ta có \(\frac{AF}{AD}=\frac{AE}{AC}\)
+với DE//BC tác có \(\frac{AE}{AC}=\frac{AD}{AB}\)
suy ra \(\frac{AF}{AD}=\frac{AD}{AB}\),
tức là \(\frac{AF}{6}\)\(=\frac{6}{9}\)
=> AF=\(\frac{6.6}{9}=4\left(cm\right)\)
CHÚC BẠN HỌC TỐT