K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2023

vũ 7b hả

 

NV
23 tháng 7 2021

a.

\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

NV
23 tháng 7 2021

b.

\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

TH1:

\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

TH2:

\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

23 tháng 6 2023

x=y=z=2

8 tháng 10 2020

a, Trừ vế theo vế hai phương trình ta được

\(x^2+6y-y^2-6x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=6-y\end{matrix}\right.\)

Nếu \(x=y,pt\left(1\right)\Leftrightarrow x^2+x=5x+3\)

\(\Leftrightarrow x^2-4x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=2+\sqrt{7}\\x=y=2-\sqrt{7}\end{matrix}\right.\)

Nếu \(x=6-y,pt\left(2\right)\Leftrightarrow y^2+6-y=5y+3\)

\(\Leftrightarrow y^2-6y+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=3+\sqrt{6}\\y=3-\sqrt{6}\end{matrix}\right.\)

\(y=3+\sqrt{6}\Rightarrow x=3-\sqrt{6}\)

\(y=3-\sqrt{6}\Rightarrow x=3+\sqrt{6}\)

8 tháng 10 2020

b, Trừ vế theo vế hai phương trình

\(3x^3-3y^3=y^2-x^2\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2+xy+y^2+x+y\right)=0\)

Từ \(pt\left(1\right)\) \(3x^3=y^2+2>0\Rightarrow x>0\)

Tương tự \(y>0\)

\(\Rightarrow x^2+xy+y^2+x+y>0,\forall x;y\)

\(\Rightarrow x=y\)

\(pt\left(1\right)\Leftrightarrow3x^3=x^2+2\)

\(\Leftrightarrow3x^3-x^2-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x^2+2x+2\right)=0\)

\(\Leftrightarrow x=y=1\left(\text{vì }3x^2+2x+2=2x^2+\left(x+1\right)^2+1>0\right)\)

NV
2 tháng 2

Pt đầu tương đương: \(\sqrt[3]{x^2}+2\sqrt[3]{y^2}+4\sqrt[3]{z^2}=7\)

Pt 2 tương đương:

\(\left(xy^2+z^4\right)^2-\left(xy^2-z^4\right)^2=4\)

\(\Leftrightarrow4xy^2z^4=4\)

\(\Leftrightarrow xy^2z^4=1\) (1)

Quay lại pt đầu, áp dụng AM-GM:

\(7=\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z}\ge7\sqrt[7]{\sqrt[3]{x^2}.\sqrt[3]{y^4}.\sqrt[3]{z^8}}\)

\(\Leftrightarrow\sqrt[21]{x^2y^4z^8}\le1\)

\(\Leftrightarrow x^2y^4z^8\le1\)

\(\Rightarrow\left|xy^2z^4\right|\le1\Rightarrow xy^2z^4\le1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x^2=y^2=z^2\\xy^2z^4=1\\x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=\pm1\\z=\pm1\end{matrix}\right.\)

Các bộ thỏa mãn là: \(\left(1;1;1\right);\left(1;1;-1\right);\left(1;-1;1\right);\left(1;-1;-1\right)\)

2 tháng 2

Anh ơi! Điều kiện x>0 là như nào ạ anh.